12,472 research outputs found
Two-component radiation model of the sonoluminescing bubble
Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev.
(E), 54, R2205 (1996), we offer an alternative interpretation of their
experimetal results. A model of sonoluminescing bubble which proposes that the
electromagnetic radiation originates from two sources: the isotropic black body
or bramsstrahlung emitting core and dipole radiation-emitting shell of
accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.
The Sound of Sonoluminescence
We consider an air bubble in water under conditions of single bubble
sonoluminescence (SBSL) and evaluate the emitted sound field nonperturbatively
for subsonic gas-liquid interface motion. Sound emission being the dominant
damping mechanism, we also implement the nonperturbative sound damping in the
Rayleigh-Plesset equation for the interface motion. We evaluate numerically the
sound pulse emitted during bubble collapse and compare the nonperturbative and
perturbative results, showing that the usual perturbative description leads to
an overestimate of the maximal surface velocity and maximal sound pressure. The
radius vs. time relation for a full SBSL cycle remains deceptively unaffected.Comment: 25 pages; LaTex and 6 attached ps figure files. Accepted for
publication in Physical Review
Gauge Theories with Cayley-Klein and Gauge Groups
Gauge theories with the orthogonal Cayley-Klein gauge groups and
are regarded. For nilpotent values of the contraction
parameters these groups are isomorphic to the non-semisimple Euclid,
Newton, Galilei groups and corresponding matter spaces are fiber spaces with
degenerate metrics. It is shown that the contracted gauge field theories
describe the same set of fields and particle mass as gauge
theories, if Lagrangians in the base and in the fibers all are taken into
account. Such theories based on non-semisimple contracted group provide more
simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure
Comment on Mie Scattering from a Sonoluminescing Bubble with High Spatial and Temporal Resolution [Physical Review E 61, 5253 (2000)]
A key parameter underlying the existence of sonoluminescence (SL)is the time
relative to SL at which acoustic energy is radiated from the collapsed bubble.
Light scattering is one route to this quantity. We disagree with the statement
of Gompf and Pecha that -highly compressed water causes the minimum in
scattered light to occur 700ps before SL- and that this effect leads to an
overestimate of the bubble wall velocity. We discuss potential artifacts in
their experimental arrangement and correct their description of previous
experiments on Mie scattering.Comment: 10 pages, 2 figure
Bubble Shape Oscillations and the Onset of Sonoluminescence
An air bubble trapped in water by an oscillating acoustic field undergoes
either radial or nonspherical pulsations depending on the strength of the
forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor
instability and parametric instability) cause deviations from sphericity.
Distinguishing these mechanisms allows explanation of many features of recent
experiments on sonoluminescence, and suggests methods for finding
sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres
Sonoluminescence as Quantum Vaccum Radiation
We argue that the available experimental data is not compatible with models
of sonoluminescence which invoke dynamical properties of the interface without
regard to the compositional properties of the trapped gas inside the bubble.Comment: 2 pages,Revtex,No figures,Submitted to PRL(comments
Modeling Bitcoin Contracts by Timed Automata
Bitcoin is a peer-to-peer cryptographic currency system. Since its
introduction in 2008, Bitcoin has gained noticeable popularity, mostly due to
its following properties: (1) the transaction fees are very low, and (2) it is
not controlled by any central authority, which in particular means that nobody
can "print" the money to generate inflation. Moreover, the transaction syntax
allows to create the so-called contracts, where a number of
mutually-distrusting parties engage in a protocol to jointly perform some
financial task, and the fairness of this process is guaranteed by the
properties of Bitcoin. Although the Bitcoin contracts have several potential
applications in the digital economy, so far they have not been widely used in
real life. This is partly due to the fact that they are cumbersome to create
and analyze, and hence risky to use.
In this paper we propose to remedy this problem by using the methods
originally developed for the computer-aided analysis for hardware and software
systems, in particular those based on the timed automata. More concretely, we
propose a framework for modeling the Bitcoin contracts using the timed automata
in the UPPAAL model checker. Our method is general and can be used to model
several contracts. As a proof-of-concept we use this framework to model some of
the Bitcoin contracts from our recent previous work. We then automatically
verify their security in UPPAAL, finding (and correcting) some subtle errors
that were difficult to spot by the manual analysis. We hope that our work can
draw the attention of the researchers working on formal modeling to the problem
of the Bitcoin contract verification, and spark off more research on this
topic
Three Dimensional Electrical Impedance Tomography
The electrical resistivity of mammalian tissues varies widely and is correlated with physiological
function. Electrical impedance tomography (EIT) can be used to probe such variations in vivo, and offers a
non-invasive means of imaging the internal conductivity distribution of the human body. But the
computational complexity of EIT has severe practical limitations, and previous work has been restricted to
considering image reconstruction as an essentially two-dimensional problem. This simplification can limit
significantly the imaging capabilities of EIT, as the electric currents used to determine the conductivity variations will not in general be confined to a two-dimensional plane. A few studies have attempted three-dimensional EIT image reconstruction, but have not yet succeeded in generating images of a quality suitable for clinical applications. Here we report the development of a three-dimensional EIT system with greatly improved imaging capabilities, which combines our 64-electrode data-collection apparatus with customized matrix inversion techniques. Our results demonstrate the practical potential of EIT for clinical applications, such as lung or brain imaging and diagnostic screening
Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin
Multi-dimensional quantum walks usually require large coin spaces. Here we
show that the non-localized case of the spatial density probability of the
two-dimensional Grover walk can be obtained using only a two-dimensional coin
space and a quantum walk in alternate directions. We present a formal proof of
this correspondence and analyze the behavior of the coin-position entanglement
as well as the x-y spatial entanglement in our scheme with respect to the
Grover one. We show that our experimentally simpler scheme allows to entangle
the two orthogonal directions of the walk more efficiently.Comment: 5 pages, 2 figures, RevTeX
- …