336 research outputs found

    Development of pseudorandom binary arrays for calibration of surface profile metrology tools

    Get PDF
    Optical Metrology tools, especially for short wavelength (EUV and X-Ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown Point-Spread Function (PSF) of the instruments [1] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a real function. Accounting for instrumental PSF becomes significantly simpler if the result of measurement of a profile is presented in a spatial frequency domain as a Power Spectral Density (PSD) distribution [2]. For example, the measured PSD distributions provide a closed set of data necessary for three-dimensional calculations of scattering of light by the optical surfaces [3], [4]. The distortion of the surface PSD distribution due to the PSF can be modeled with the Modulation Transfer Function (MTF), which is defined over the spatial frequency bandwidth of the instrument [1], [2]. The measured PSD distribution can be presented as a product of the squared MTF and the ideal PSD distribution inherent for the System Under Test (SUT). Therefore, the instrumental MTF can be evaluated by comparing a measured PSD distribution of a known test surface with the corresponding ideal numerically simulated PSD. The square root of the ratio of the measured and simulated PSD distributions gives the MTF of the instrument. In previous work [5], [6] the instrumental MTF of a surface profiler was precisely measured using reference test surfaces based on Binary Pseudo-Random (BPR) gratings. Here, we present results of fabricating and using two-dimensional (2D) BPR arrays that allow for a direct 2D calibration of the instrumental MTF. BPR sequences are widely used in engineering and communication applications such as Global Position System, and wireless communication protocols. The ideal BPR pattern has a flat 'white noise' response over the entire range of spatial frequencies of interest. The BPR array used here is based on the Uniformly Redundant Array prescription [7] initially used for x-ray and gamma ray astronomy applications. The URA's superior imaging capability originates from the fact that its cyclical autocorrelation function very closely approximates a delta function, which produces a flat PSD. Three different size BPR array patterns were fabricated by electron beam lithography and ICP etching of silicon. The basic size unit was 200 nm, 400 nm, and 600 nm. Two different etch processes were used, CF{sub 4}/Ar and HBr, which resulted in undercut and vertical sidewall profiles, respectively. The 2D BPR arrays were used as standard test surfaces for MTF calibration of the MicroMap{trademark}-570 interferometric microscope using all available objectives. The HBr etched two-dimensional BPR arrays have proven to be a very effective calibration standard making possible direct calibration corrections without the need of additional calculation considerations, while departures from the ideal vertical sidewall require an additional correction term for the CF{sub 4}/Ar etched samples. [8] Initial surface roughness of low cost 'prime' wafers limits low magnification calibration but should not be a limitation if better polished samples are used

    Cycling exercise classes may be bad for your (hearing) health

    Full text link
    OBJECTIVES/HYPOTHESIS: 1) Determine feasibility of smartphone-based mobile technology to measure noise exposure; and 2) measure noise exposure in exercise spin classes. STUDY DESIGN: Observational Study. METHODS: The SoundMeter Pro app (Faber Acoustical, Salt Lake City, UT) was installed and calibrated on iPhone and iPod devices in an audiology chamber using an external sound level meter to within 2 dBA of accuracy. Recording devices were placed in the bike cupholders of participants attending spin classes in Boston, Massachusetts (n = 17) and used to measure sound level (A-weighted) and noise dosimetry during exercise according to National Institute for Occupational Safety and Health (NIOSH) guidelines. RESULTS: The average length of exposure was 48.9 ± 1.2 (standard error of the mean) minutes per class. Maximum sound recorded among 17 random classes was 116.7 dBA, which was below the NIOSH instantaneous exposure guideline of 140 dBA. An average of 31.6 ± 3.8 minutes were spent at >100 dBA. This exceeds NIOSH recommendations of 15 minutes of exposure or less at 100 dBA per day. Average noise exposure for one 45-minute class was 8.95 ± 1.2 times the recommended noise exposure dose for an 8-hour workday. CONCLUSIONS: Preliminary data shows that randomly sampled cycling classes may have high noise levels with a potential for noise-induced hearing loss. Mobile dosimetry technology may enable users to self-monitor risk to their hearing and actively engage in noise protection measures. LEVEL OF EVIDENCE: NA Laryngoscope, 127:1873-1877, 2017.Accepted manuscrip

    Presynaptic partner selection during retinal circuit reassembly varies with timing of neuronal regeneration in vivo

    Get PDF
    Whether neurons can restore their original connectivity patterns during circuit repair is unclear. Taking advantage of the regenerative capacity of zebrafish retina, we show here the remarkable specificity by which surviving neurons reassemble their connectivity upon regeneration of their major input. H3 horizontal cells (HCs) normally avoid red and green cones, and prefer ultraviolet over blue cones. Upon ablation of the major (ultraviolet) input, H3 HCs do not immediately increase connectivity with other cone types. Instead, H3 dendrites retract and re-extend to contact new ultraviolet cones. But, if regeneration is delayed or absent, blue-cone synaptogenesis increases and ectopic synapses are made with red and green cones. Thus, cues directing synapse specificity can be maintained following input loss, but only within a limited time period. Further, we postulate that signals from the major input that shape the H3 HC's wiring pattern during development persist to restrict miswiring after damage

    P-rex1 cooperates with PDGFRβ to drive cellular migration in 3D microenvironments

    Get PDF
    Expression of the Rac-guanine nucleotide exchange factor (RacGEF), P-Rex1 is a key determinant of progression to metastasis in a number of human cancers. In accordance with this proposed role in cancer cell invasion and metastasis, we find that ectopic expression of P-Rex1 in an immortalised human fibroblast cell line is sufficient to drive multiple migratory and invasive phenotypes. The invasive phenotype is greatly enhanced by the presence of a gradient of serum or platelet-derived growth factor, and is dependent upon the expression of functional PDGF receptor β. Consistently, the invasiveness of WM852 melanoma cells, which endogenously express P-Rex1 and PDGFRβ, is opposed by siRNA of either of these proteins. Furthermore, the current model of P-Rex1 activation is advanced through demonstration of P-Rex1 and PDGFRβ as components of the same macromolecular complex. These data suggest that P-Rex1 has an influence on physiological migratory processes, such as invasion of cancer cells, both through effects upon classical Rac1-driven motility and a novel association with RTK signalling complexes

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    279 Development of Pseudo-random Binary Arrays for Calibration of Surface Profile Metrology Tools

    Get PDF
    Abstract Optical Metrology tools, especially for short wavelength (EUV and X-Ray), must cover a wide range of spatial frequencies from the very low, which affects figure, to the important mid-spatial frequencies and the high spatial frequency range, which produces undesirable scattering. A major difficulty in using surface profilometers arises due to the unknown Point-Spread Function (PSF) of the instruments [1] that is responsible for distortion of the measured surface profile. Generally, the distortion due to the PSF is difficult to account because the PSF is a complex function that comes to the measurement via the convolution operation, while the measured profile is described with a rea

    Reliability of 3-Dimensional Measures of Single-Leg Cross Drop Landing Across 3 Different Institutions: Implications for Multicenter Biomechanical and Epidemiological Research on ACL Injury Prevention

    Get PDF
    Background: Anterior cruciate ligament (ACL) injuries are physically and financially devastating but affect a relatively small percentage of the population. Prospective identification of risk factors for ACL injury necessitates a large sample size; therefore, study of this injury would benefit from a multicenter approach. Purpose: To determine the reliability of kinematic and kinetic measures of a single-leg cross drop task across 3 institutions. Study Design: Controlled laboratory study. Methods: Twenty-five female high school volleyball players participated in this study. Three-dimensional motion data of each participant performing the single-leg cross drop were collected at 3 institutions over a period of 4 weeks. Coefficients of multiple correlation were calculated to assess the reliability of kinematic and kinetic measures during the landing phase of the movement. Results: Between-centers reliability for kinematic waveforms in the frontal and sagittal planes was good, but moderate in the transverse plane. Between-centers reliability for kinetic waveforms was good in the sagittal, frontal, and transverse planes. Conclusion: Based on these findings, the single-leg cross drop task has moderate to good reliability of kinematic and kinetic measures across institutions after implementation of a standardized testing protocol. Clinical Relevance: Multicenter collaborations can increase study numbers and generalize results, which is beneficial for studies of relatively rare phenomena, such as ACL injury. An important step is to determine the reliability of risk assessments across institutions before a multicenter collaboration can be initiated

    High resolution synchrotron imaging of wheat root hairs growing in soil and image based modelling of phosphate uptake

    No full text
    Root hairs are known to be highly important for uptake of sparingly soluble nutrients, particularly in nutrient deficient soils. Development of increasingly sophisticated mathematical models has allowed uptake characteristics to be quantified. However, modelling has been constrained by a lack of methods for imaging live root hairs growing in real soils.We developed a plant growth protocol and used Synchrotron Radiation X-ray Tomographic Microscopy (SRXTM) to uncover the 3D interactions of root hairs in real soil. We developed a model of phosphate uptake by root hairs based directly on the geometry of hairs and associated soil pores as revealed by imaging.Previous modelling studies found that root hairs dominate phosphate uptake. By contrast, our study suggests that hairs and roots contribute equally. We show that uptake by hairs is more localised than by roots and strongly dependent on root hair and aggregate orientation.The ability to image hair-soil interactions enables a step change in modelling approaches, allowing a more realistic treatment of processes at the scale of individual root hairs in soil pores

    Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Get PDF
    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters
    • …
    corecore