8 research outputs found

    Terminology of developmental abnormalities in common laboratory mammals (Version 2)

    No full text
    This update (Version 2) of the Terminology of Developmental Abnormalities in Common Laboratory Mammals (Version 1) incorporates improvements and enhancements to both content and organization of the terminology to enable greater flexibility in its application, while maintaining a consistent approach to the description of findings. The revisions are the result of an international collaboration among interested organizations, advised by individual experts and the outcomes of several workshops. The terminology remains organized into tables under the broad categories of external, visceral, and skeletal observations, following the manner in which data are typically collected and recorded in developmental toxicity studies. This arrangement of the tables, as well as other information provided in appendices, is intended to facilitate the process of specimen evaluation at the laboratory bench level. Only the commonly used laboratory mammals (i.e. rats, mice, rabbits) are addressed in the current terminology tables. The inclusion of other species that are used in developmental toxicity testing, such as primates, is considered outside the scope of the present update. Similarly, categorization of findings as, for example, 'malformation' or 'variation' remains unaddressed, in accordance with the overall principle that the focus of this document is descriptive terminology and not diagnosis or interpretation. The skeletal terms have been augmented to accommodate cartilage findings

    Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies

    Get PDF
    Regenerative medicine therapies hold enormous potential for a variety of currently incurable conditions with high unmet clinical need. Most progress in this field to date has been achieved with cell-based regenerative medicine therapies, with over a thousand clinical trials performed up to 2015. However, lack of adequate safety and efficacy data is currently limiting wider uptake of these therapies. To facilitate clinical translation, non-invasive in vivo imaging technologies that enable careful evaluation and characterisation of the administered cells and their effects on host tissues are critically required to evaluate their safety and efficacy in relevant preclinical models. This article reviews the most common imaging technologies available and how they can be applied to regenerative medicine research. We cover details of how each technology works, which cell labels are most appropriate for different applications, and the value of multi-modal imaging approaches to gain a comprehensive understanding of the responses to cell therapy in vivo

    Parasitic Infections of the Genito-urinary Tract

    No full text
    corecore