206 research outputs found

    Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-Part I: Nash Equilibria

    Full text link
    In this two-parts paper we propose a decentralized strategy, based on a game-theoretic formulation, to find out the optimal precoding/multiplexing matrices for a multipoint-to-multipoint communication system composed of a set of wideband links sharing the same physical resources, i.e., time and bandwidth. We assume, as optimality criterion, the achievement of a Nash equilibrium and consider two alternative optimization problems: 1) the competitive maximization of mutual information on each link, given constraints on the transmit power and on the spectral mask imposed by the radio spectrum regulatory bodies; and 2) the competitive maximization of the transmission rate, using finite order constellations, under the same constraints as above, plus a constraint on the average error probability. In Part I of the paper, we start by showing that the solution set of both noncooperative games is always nonempty and contains only pure strategies. Then, we prove that the optimal precoding/multiplexing scheme for both games leads to a channel diagonalizing structure, so that both matrix-valued problems can be recast in a simpler unified vector power control game, with no performance penalty. Thus, we study this simpler game and derive sufficient conditions ensuring the uniqueness of the Nash equilibrium. Interestingly, although derived under stronger constraints, incorporating for example spectral mask constraints, our uniqueness conditions have broader validity than previously known conditions. Finally, we assess the goodness of the proposed decentralized strategy by comparing its performance with the performance of a Pareto-optimal centralized scheme. To reach the Nash equilibria of the game, in Part II, we propose alternative distributed algorithms, along with their convergence conditions.Comment: Paper submitted to IEEE Transactions on Signal Processing, September 22, 2005. Revised March 14, 2007. Accepted June 5, 2007. To be published on IEEE Transactions on Signal Processing, 2007. To appear on IEEE Transactions on Signal Processing, 200

    Taylor subsumes Scott, Berry, Kahn and Plotkin

    Get PDF
    The speculative ambition of replacing the old theory of program approximation based on syntactic continuity with the theory of resource consumption based on Taylor expansion and originating from the differential γ-calculus is nowadays at hand. Using this resource sensitive theory, we provide simple proofs of important results in γ-calculus that are usually demonstrated by exploiting Scott's continuity, Berry's stability or Kahn and Plotkin's sequentiality theory. A paradigmatic example is given by the Perpendicular Lines Lemma for the Böhm tree semantics, which is proved here simply by induction, but relying on the main properties of resource approximants: strong normalization, confluence and linearity

    Production of Orchard-Grass Cultivars (\u3ci\u3eDactylis glomerata\u3c/i\u3e) in Mixtures with Alfalfa (\u3ci\u3eMedicago sativa\u3c/i\u3e), under Grazing Conditions

    Get PDF
    In the Lower Valley of the Río Negro (northern Patagonia, Argentina), six binary mixtures of orchard-grass (Dactylis glomerata) cultivars (Porto, Currie, Filox, a Local ecotype, Pergamino El Cencerro MAG) and alfalfa (Medicago sativa) Monarca SP INTA, were tested under grazing and irrigation. Mixtures were evaluated during three growing seasons (96/97; 97/98 and 98/99). Total forage production of mixtures and botanical composition was measured (orchard-grass cultivars and alfalfa). Porto, Currie, Filox, Local and Cencerro cultivars reached similar yield, while Amba produced less forage (p\u3c 0.05). Mixture yield showed no significant difference, except Porto + alfalfa, which was lower (p\u3c 0.05). The grass was higher in spring (1st grazing) of three growing seasons. Orchard-grass + alfalfa showed highest dry matter production in 2nd and 3rd grazing. Alfalfa increased production along the three seasons in replacement of the declining tendency of orchard grass cultivars

    Semantic Communications Based on Adaptive Generative Models and Information Bottleneck

    Full text link
    Semantic communications represent a significant breakthrough with respect to the current communication paradigm, as they focus on recovering the meaning behind the transmitted sequence of symbols, rather than the symbols themselves. In semantic communications, the scope of the destination is not to recover a list of symbols symbolically identical to the transmitted ones, but rather to recover a message that is semantically equivalent to the semantic message emitted by the source. This paradigm shift introduces many degrees of freedom to the encoding and decoding rules that can be exploited to make the design of communication systems much more efficient. In this paper, we present an approach to semantic communication building on three fundamental ideas: 1) represent data over a topological space as a formal way to capture semantics, as expressed through relations; 2) use the information bottleneck principle as a way to identify relevant information and adapt the information bottleneck online, as a function of the wireless channel state, in order to strike an optimal trade-off between transmit power, reconstruction accuracy and delay; 3) exploit probabilistic generative models as a general tool to adapt the transmission rate to the wireless channel state and make possible the regeneration of the transmitted images or run classification tasks at the receiver side.Comment: To appear on IEEE Communications Magazine, special issue on Semantic Communications: Transmission beyond Shannon, 202

    Perfluoroalkyl substances in human milk: A first survey in Italy

    Get PDF
    Due to their widespread diffusion, perfluoroalkyl substances (PFASs) have been frequently found in the environment and in several animal species. It has been demonstrated that they can easily reach also humans, mainly through diet. Being lactation a major route of elimination of these contaminants, their occurrence in human milk is of particular interest, especially considering that it generally represents the unique food source for newborns. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the two most important compounds of this family, have been frequently found in human milk at variable concentrations, but still limited data are available. The present study, the first conducted in Italy capable to detect these pollutants at ultra-trace levels by UPLC-MS/MS, confirmed the role of lactation as a relevant source of exposure for breastfed children. The measured concentrations ranged between 15 and 288 ng/L for PFOS and between 24 and 241 ng/L for PFOA. Moreover, mean concentrations and frequencies of both analytes resulted higher in milk samples provided by primiparous women, suggesting that the risk of intake might be higher for first-borns. Finally, comparing these results with previous data, PFOS gradual decrease over time since year 2000 was confirmed

    Global characterization factors for quantifying the impacts of increasing water temperature on freshwater fish

    Get PDF
    Water temperature is an abiotic master variable for the survival of aquatic organisms. Global warming alters the thermal regimes of rivers and, thus, poses a threat to freshwater biodiversity. To address the impacts of water temperature changes related to global warming on freshwater fish species in life cycle assessment (LCA), we developed spatially explicit characterization factors (CFs) for 207 greenhouse gases under four representative concentration pathways. We calculated fate factors by using the output of a global hydrological model fully coupled with a dynamic water temperature model. We developed six species sensitivity distribution curves for two thermal effects (i.e., lethal and sub-lethal) to derive effect factors, which take the differences in sensitivity between climate regions into account. The regional CFs for CO2 ranged from 2.91 x 10(-22) to 6.53 x 10(-18) PAF.yr/kg for sub-lethal effects and from 1.98 x 10(-22) to 4.58 x 10(-18) PDF.yr/kg for lethal effects, depending on the river watersheds and future climate scenarios. To identify the contribution of regional impacts on freshwater fish to their potential global extinction, the regional CFs were converted into global CFs. The largest CFs always occur in the tropical watersheds. The regional impacts in the Amazon watershed contribute the most to the global freshwater fish species extinction. This study contributes to assessing the potential impacts on freshwater biodiversity from global warming from a new cause-effect pathway in LCA.Industrial Ecolog

    An automated system for the objective evaluation of human gustatory sensitivity using tongue biopotential recordings

    Get PDF
    The goal of this work is to develop an automatic system for the evaluation of the gustatory sensitivity of patients using an electrophysiological recording of the response of bud cells to taste stimuli. In particular, the study aims to evaluate the effectiveness and limitations of supervised classifiers in the discrimination between subjects belonging to the three 6-n-pro-pylthiouracil (PROP) taster categories (supertasters, medium tasters, and non-tasters), exploiting features extracted from electrophysiological recordings of the tongue. Thirty-nine subjects (equally divided into the three PROP status classes by standard non-objective scaling methods) underwent a non-invasive, differential, biopotential recording of their tongues during stimulation with PROP by using a custom-made, flexible, silver electrode. Two different classifiers were trained to recognize up to seven different features extracted from the recorded depolarization signal. The classification results indicate that the identified set of features allows to distinguish between PROP tasters and non-tasters (average accuracy of 80% ± 18% and up to 94% ± 15% when only supertasters and non-tasters are considered), but medium tasters were difficult to identify. However, these apparent classification errors are related to uncertainty in the labeling procedures, which are based on non-objective tests, in which the subjects provided borderline evaluations. Thus, using the proposed method, it is possible, for the first time, to automatically achieve objective PROP taster status identification with high accuracy. The simplicity of the recording technique allows for easy reproduction of the experimental setting; thus the technique can be used in future studies to evaluate other gustatory stimuli. The proposed approach represents the first objective and automatic method to directly measure human gustatory responses and a milestone for physiological taste studies, with applications ranging from basic science to food tasting evaluations

    Simple thalidomide analogs in melanoma: Synthesis and biological activity

    Get PDF
    Thalidomide is an old well-known drug that is still of clinical interest, despite its terato-genic activities, due to its antiangiogenic and immunomodulatory properties. Therefore, efforts to design safer and effective thalidomide analogs are continually ongoing. Research studies on thalidomide analogs have revealed that the phthalimide ring system is an essential pharmacophoric fragment; thus, many phthalimidic compounds have been synthesized and evaluated as anticancer drug candidates. In this study, a panel of selected in vitro assays, performed on a small series of phthalimide derivatives, allowed us to characterize compound 2k as a good anticancer agent, acting on A2058 melanoma cell line, which causes cell death by apoptosis due to its capability to inhibit tubulin polymerization. The obtained data were confirmed by in silico assays. No cytotoxic effects on normal cells have been detected for this compound that proves to be a valid candidate for further investigations to achieve new insights on possible mechanism of action of this class of compounds as anticancer drugs

    Pomegranate: Nutraceutical with promising benefits on human health

    Get PDF
    Pomegranate is an old plant made up by flowers, roots, fruits and leaves, native to Central Asia and principally cultivated in the Mediterranean and California (although now widespread almost all over the globe). The current use of this precious plant regards not only the exteriority of the fruit (employed also for ornamental purpose) but especially the nutritional and, still potential, health benefits that come out from the various parts composing this one (carpellary membranes, arils, seeds and bark). Indeed, the phytochemical composition of the fruit abounds in compounds (flavonoids, ellagitannins, proanthocyanidins, mineral salts, vitamins, lipids, organic acids) presenting a significant biological and nutraceutical value. For these reasons, pomegranate interest is increased over the years as the object of study for many research groups, particularly in the pharmaceutical sector. Specifically, in-depth studies of its biological and functional properties and the research of new formulations could be applied to a wide spectrum of diseases including neoplastic, cardiovascular, viral, inflammatory, metabolic, microbial, intestinal, reproductive and skin diseases. In this review, considering the increasing scientific and commercial interest of nutraceuticals, we reported an update of the investigations concerning the health-promoting properties of pomegranate and its bioactive compounds against principal human pathologies
    • …
    corecore