10 research outputs found

    National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

    Get PDF
    We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future

    Gas phase dissociation of H2SO4: A computational study

    No full text
    The decomposition of gaseous sulfuric acid has been investigated computationally. In particular the role of the hydrated gaseous coordination adducts of SO3(g) and H2SO4(g) in the (dissociation + decomposition) process has been evaluated. A first principles study of the gaseous coordination complexes SO3(H2O)n (n = 1 to 3) and H2SO4(H2O)m (m = 1 to 2) has been carried out deriving equilibrium ground state structures, vibrational frequencies and energetic stabilities by the Moller–Plesset perturbation approximation. These results have been used to derive the enthalpy of formation at 0 K and the Gibbs energy functions of these molecules. A new thermodynamic modeling of the decomposition of H2SO4(g) has been therefore performed considering the effect of temperature, pressure and initial composition of the gas (hydration conditions)

    Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production

    No full text
    Zero emission energy production systems are the main goal of engineering and research efforts. The use of hydrogen is the most suitable option, and hydrogen production by water using renewable energy power supply could be the final solution. In this study the sulphur–iodine cycle for hydrogen production by a water-splitting reaction has been investigated and new experimental results on thermal dissociation of sulphuric acid has been discussed. The decomposition of H2SO4 to produce SO2 is the reaction with the highest energy demand in the S–I cycle and it shows a large kinetic barrier. In this work, two catalysts, a Pd–Ag alloy and ferric oxide (Fe2O3), have been tested to evaluate their effect on dissociation efficiency at various temperatures. For both catalysts a large onset temperature decrease for the activation of this reaction has been achieved. In the case of the intermetallic alloy Ag–Pd it may be suggested that the metal oxide PdO could be the active catalytic species

    Decomposition of H2SO4 by direct solar radiation

    No full text
    The sulfur-iodine cycle is one of the most promising thermochemical cycles for hydrogen production. Its coupling with a solar energy primary source is a great challenge to achieve efficient and economically competitive H-2 production. Within this cycle, the decomposition of sulfuric acid plays a key role, with this process being the most energy-demanding reaction step. In this paper, a combined computational and experimental study of the decomposition at high temperature of H2SO4 to SO2 is presented. The scope of this paper is to present new information and data about the experimental high-temperature decomposition of sulfuric acid carried out in a solar reactor in view of a possible industrial exploitation of this reaction. Starting from a new complete thermodynamic modeling of the process, carried out by investigating the effect of the pressure and the temperature on the SO2 conversion rates, the study of the high-temperature decomposition of H2SO4 by direct solar radiation using a Fe2O3-based catalyst was carried out for the first time. The modeling and experimental results obtained are discussed together with the available literature. In summary, SO2 conversion yields close to thermodynamic predictions were obtained in the temperature range 1050-1200 K at a starting sulfuric acid partial pressure of p = 0.61 bar.The sulfur-iodine cycle is one of the most promising thermochemical cycles for hydrogen production. Its coupling with a solar energy primary source is a great challenge to achieve efficient and economically competitive H2 production. Within this cycle, the decomposition of sulfuric acid plays a key role, with this process being the most energy-demanding reaction step. In this paper, a combined computational and experimental study of the decomposition at high temperature of H2SO4 to SO2 is presented. The scope of this paper is to present new information and data about the experimental high-temperature decomposition of sulfuric acid carried out in a solar reactor in view of a possible industrial exploitation of this reaction. Starting from a new complete thermodynamic modeling of the process, carried out by investigating the effect of the pressure and the temperature on the SO2 conversion rates, the study of the high-temperature decomposition of H2SO4 by direct solar radiation using a Fe2O3-based catalyst was carried out for the first time. The modeling and experimental results obtained are discussed together with the available literature. In summary, SO2 conversion yields close to thermodynamic predictions were obtained in the temperature range 1050-1200 K at a starting sulfuric acid partial pressure of p=0.61 bar

    Decomposition of H2SO4 by direct solar radiation

    No full text
    The sulfur-iodine cycle is one of the most promising thermochemical cycles for hydrogen production. Its coupling with a solar energy primary source is a great challenge to achieve efficient and economically competitive H-2 production. Within this cycle, the decomposition of sulfuric acid plays a key role, with this process being the most energy-demanding reaction step. In this paper, a combined computational and experimental study of the decomposition at high temperature of H2SO4 to SO2 is presented. The scope of this paper is to present new information and data about the experimental high-temperature decomposition of sulfuric acid carried out in a solar reactor in view of a possible industrial exploitation of this reaction. Starting from a new complete thermodynamic modeling of the process, carried out by investigating the effect of the pressure and the temperature on the SO2 conversion rates, the study of the high-temperature decomposition of H2SO4 by direct solar radiation using a Fe2O3-based catalyst was carried out for the first time. The modeling and experimental results obtained are discussed together with the available literature. In summary, SO2 conversion yields close to thermodynamic predictions were obtained in the temperature range 1050-1200 K at a starting sulfuric acid partial pressure of p = 0.61 bar

    Taste sensitivity to 6-n-propylthiouracil is associated with endocannabinoid plasma levels in normal-weight individuals

    No full text
    Objective: Reduced sensitivity to 6-n-propylthiouracil (PROP) has been shown to be associated with increased energy intake and therefore increased BMI, while other studies did not confirm this association, suggesting the involvement of other factors. We investigated whether the endocannabinoid system, which also modulates hunger/satiety and energy balance, plays a role in modulating eating behavior influenced by sensitivity to PROP. Methods: The plasma profile of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide (AEA) and congeners of the latter, palmitoylethanolamide (PEA) and oleylethanolamide (OEA), was determined in normal-weight PROP super-tasters (ST) and PROP non-tasters (NT). Cognitive eating behavior disorder was assessed by the Three-Factor Eating Questionnaire (TFEQ), which estimates dietary restraint, disinhibition and perceived hunger. Results: Disinhibition score of NT was higher than those of ST (P = 0.02). Moreover, in NT, OEA was inversely correlated to the perceived hunger score (r = -0.7; P = 0.002), and AEA was positively correlated to restraint score (r = 0.5; P = 0.04) and negatively to perceived hunger score, although the latter correlation was at the limit of statistical significance (r = -0.47; P = 0.05). In addition, we found lower concentrations of AEA and 2-AG in the plasma of NT compared to ST subjects (AEA: P = 0.034; 2-AG: P = 0.003). Conclusions: Our data suggest that higher dishinibition behavior in NT may be partly compensated, in normal-weight subjects, by the reduction of peripheral endocannabinoids in order to downregulate the hunger-energy intake circuitry

    Exploring metrics for the characterization of the cerebral autoregulation during head-up tilt and propofol general anesthesia

    No full text
    Techniques grounded on the simultaneous utilization of Tiecks' second order differential equations and spontaneous variability of mean arterial pressure (MAP) and mean cerebral blood flow velocity (MCBFV), recorded from middle cerebral arteries through a transcranial Doppler device, provide a characterization of cerebral autoregulation (CA) via the autoregulation index (ARI). These methods exploit two metrics for comparing the measured MCBFV series with the version predicted by Tiecks' model: normalized mean square prediction error (NMSPE) and normalized correlation ρ. The aim of this study is to assess the two metrics for ARI computation in 13 healthy subjects (age: 27 ± 8 yrs., 5 males) at rest in supine position (REST) and during 60° head-up tilt (HUT) and in 19 patients (age: 64 ± 8 yrs., all males), scheduled for coronary artery bypass grafting, before (PRE) and after (POST) propofol general anesthesia induction. Analyses were carried out over the original MAP and MCBFV pairs and surrogate unmatched couples built individually via time-shifting procedure. We found that: i) NMSPE and ρ metrics exhibited similar performances in passing individual surrogate test; ii) the two metrics could lead to different ARI estimates; iii) CA was not different during HUT or POST compared to baseline and this conclusion held regardless of the technique and metric for ARI estimation. Results suggest a limited impact of the sympathetic control on CA

    National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021

    No full text
    We compare forecasts of weekly case and death numbers for COVID-19 in Germany and Poland based on 15 different modelling approaches. These cover the period from January to April 2021 and address numbers of cases and deaths one and two weeks into the future, along with the respective uncertainties. We find that combining different forecasts into one forecast can enable better predictions. However, case numbers over longer periods were challenging to predict. Additional data sources, such as information about different versions of the SARS-CoV-2 virus present in the population, might improve forecasts in the future
    corecore