237 research outputs found

    A picture of eight turtles: the child’s understanding of cardinality and numerosity

    Get PDF
    An essential part of understanding number words (e.g., eight) is understanding that all number words refer to the dimension of experience we call numerosity. Knowledge of this general principle may be separable from knowledge of individual number word meanings. That is, children may learn the meanings of at least a few individual number words before realizing that all number words refer to numerosity. Alternatively, knowledge of this general principle may form relatively early and proceed to guide and constrain the acquisition of individual number word meanings. The current article describes two experiments in which 116 children (2½- to 4-year-olds) were given a Word Extension task as well as a standard Give-N task. Results show that only children who understood the cardinality principle of counting successfully extended number words from one set to another based on numerosity—with evidence that a developing understanding of this concept emerges as children approach the cardinality principle induction. These findings support the view that children do not use a broad understanding of number words to initially connect number words to numerosity but rather make this connection around the time that they figure out the cardinality principle of counting

    Learning to represent exact numbers

    Full text link
    This article focuses on how young children acquire concepts for exact, cardinal numbers (e.g., three, seven, two hundred, etc.). I believe that exact numbers are a conceptual structure that was invented by people, and that most children acquire gradually, over a period of months or years during early childhood. This article reviews studies that explore children’s number knowledge at various points during this acquisition process. Most of these studies were done in my own lab, and assume the theoretical framework proposed by Carey (2009). In this framework, the counting list (‘one,’ ‘two,’ ‘three,’ etc.) and the counting routine (i.e., reciting the list and pointing to objects, one at a time) form a placeholder structure. Over time, the placeholder structure is gradually filled in with meaning to become a conceptual structure that allows the child to represent exact numbers (e.g., There are 24 children in my class, so I need to bring 24 cupcakes for the party.) A number system is a socially shared, structured set of symbols that pose a learning challenge for children. But once children have acquired a number system, it allows them to represent information (i.e., large, exact cardinal values) that they had no way of representing before
    • …
    corecore