7,206 research outputs found
A model for pion collinear parton distribution function and form factor
We developed a model for the pion light-front wave function (LFWF) that
incorporates valence, sea and gluon degrees of freedom. Using the LFWF overlap
representation, we derived parametrizations for the pion parton distribution
functions and the electromagnetic form factor. These parametrizations depend on
two distinct sets of parameters, enabling separate fits of the longitudinal-
and transverse-momentum dependencies of the LFWF. The pion PDFs are extracted
from available Drell-Yan and photon-production data using the xFitter framework
and are found well compatible with existing extractions. Furthermore, the fit
of the electromagnetic form factor of the pion to all the available
experimental data works quite successfully.Comment: 5 pages, 5 figures. Contribution presented at DIS202
Statistical mechanics and thermodynamics of viral evolution
This paper analyzes a simplified model of viral infection and evolution using
the 'grand canonical ensemble' and formalisms from statistical mechanics and
thermodynamics to enumerate all possible viruses and to derive thermodynamic
variables for the system. We model the infection process as a series of energy
barriers determined by the genetic states of the virus and host as a function
of immune response and system temperature. We find a phase transition between a
positive temperature regime of normal replication and a negative temperature
'disordered' phase of the virus. These phases define different regimes in which
different genetic strategies are favored. Perhaps most importantly, it
demonstrates that the system has a real thermodynamic temperature. For normal
replication, this temperature is linearly related to effective temperature. The
strength of immune response rescales temperature but does not change the
observed linear relationship. For all temperatures and immunities studied, we
find a universal curve relating the order parameter to viral evolvability. Real
viruses have finite length RNA segments that encode for proteins which
determine their fitness; hence the methods put forth here could be refined to
apply to real biological systems, perhaps providing insight into immune escape,
the emergence of novel pathogens and other results of viral evolution.Comment: 39 pages (55 pages including supplement), 9 figures, 11 supplemental
figure
Stable isotope profiles reveal active production of VOCs from human-associated microbes.
Volatile organic compounds (VOCs) measured from exhaled breath have great promise for the diagnosis of bacterial infections. However, determining human or microbial origin of VOCs detected in breath remains a great challenge. For example, the microbial fermentation product 2,3-butanedione was recently found in the breath of Cystic Fibrosis (CF) patients; parallel culture-independent metagenomic sequencing of the same samples revealed that Streptococcus and Rothia spp. have the genetic capacity to produce 2,3-butanedione. To investigate whether the genetic capacity found in metagenomes translates to bacterial production of a VOC of interest such as 2,3-butanedione, we fed stable isotopes to three bacterial strains isolated from patients: two gram-positive bacteria, Rothia mucilaginosa and Streptococcus salivarius, and a dominant opportunistic gram-negative pathogen, Pseudomonas aeruginosa. Culture headspaces were collected and analyzed using a gas chromatographic system to quantify the abundance of VOCs of interest; mass spectroscopy was used to determine whether the stable isotope label had been incorporated. Our results show that R. mucilaginosa and S. salivarius consumed D-Glucose-13C6 to produce labeled 2,3-butanedione. R. mucilaginosa and S. salivarius also produced labeled acetaldehyde and ethanol when grown with 2H2O. Additionally, we find that P. aeruginosa growth and dimethyl sulfide production are increased when exposed to lactic acid in culture. These results highlight the importance VOCs produced by P. aeruginosa, R. mucilaginosa, and S. salivarius as nutrients and signals in microbial communities, and as potential biomarkers in a CF infection
Atmospheric monitoring in the mm and sub-mm bands for cosmological observations: CASPER2
Cosmological observations from ground at millimetre and sub-millimetre
wavelengths are affected by atmospheric absorption and consequent emission. The
low and high frequency (sky noise) fluctuations of atmospheric performance
imply careful observational strategies and/or instrument technical solutions.
Measurements of atmospheric emission spectra are necessary for accurate
calibration procedures as well as for site testing statistics. CASPER2, an
instrument to explore the 90-450 GHz (3-15 1/cm) spectral region, was developed
and verified its operation in the Alps. A Martin-Puplett Interferometer (MPI)
operates comparing sky radiation, coming from a field of view (fov) of 28
arcminutes (FWHM) collected by a 62-cm in diameter Pressman-Camichel telescope,
with a reference source. The two output ports of the interferometer are
detected by two bolometers cooled down to 300 mK inside a wet cryostat. Three
different and complementary interferometric techniques can be performed with
CASPER2: Amplitude Modulation (AM), Fast-Scan (FS) and Phase Modulation (PM).
An altazimuthal mount allows the sky pointing, possibly co-alligned to the
optical axis of the 2.6-m in diameter telescope of MITO (Millimetre and
Infrared Testagrigia Observatory, Italy). Optimal timescale to average acquired
spectra is inferred by Allan variance analysis at 5 fiducial frequencies. We
present the motivation for and design of the atmospheric spectrometer CASPER2.
The adopted procedure to calibrate the instrument and preliminary performance
of the instrument are described. Instrument capabilities were checked during
the summer observational campaign at MITO in July 2010 by measuring atmospheric
emission spectra with the three different procedures.Comment: 11 pages, 9 figures, 2 tables, Accepted for publication in MNRA
Association between attention and heart rate fluctuations in pathological worriers
Recent data suggests that several psychopathological conditions are associated with alterations in the variability of behavioral and physiological responses. Pathological worry, defined as the cognitive representation of a potential threat, has been associated with reduced variability of heart beat oscillations (i.e., decreased heart rate variability; HRV) and lapses of attention indexed by reaction times (RTs). Clinical populations with attention deficit show RTs oscillation around 0.05 and 0.01 Hz when performing a sustained attention task. We tested the hypothesis that people who are prone to worry do it in a predictable oscillating pattern revealed through recurrent lapses in attention and concomitant oscillating HRV. Sixty healthy young adults (50% women) were recruited: 30 exceeded the clinical cut-off on the Penn State Worry Questionnaire (PSWQ; High-Worry, HW); the remaining 30 constituted the Low-Worry (LW) group. After a diagnostic assessment, participants performed two 15-min sustained attention tasks, interspersed by a standardized worry-induction procedure. RTs, HRV and moods were assessed. The analyses of the frequency spectrum showed that the HW group presents a significant higher and constant peak of RTs oscillation around 0.01 Hz (period 100 s) after the induction of worry, in comparison with their baseline and with the LW group that was not responsive to the induction procedure. Physiologically, the induction significantly reduced high-frequency HRV and such reduction was associated with levels of self-reported worry. Results are coherent with the oscillatory nature of the default mode network (DMN) and further confirm an association between cognitive rigidity and autonomic nervous system inflexibility
Schweinehaltung: Beratung zurzeit dringlicher als Forschung
Mit einer Umfrage unter Biobetrieben mit Schweinhaltung haben die Fachgruppen Beratung und Tiergesundheit des FiBL zu ergründen versucht, wo die wichtigsten Probleme in der Zucht und Mast von Bioschweinen liegen und wo Forschungsbedarf besteht. Interessant ist nicht zuletzt die Abhängigkeit der Problemlage von der Anzahl gehaltener Tiere. Die meisten der Schwierigkeiten liessen sich mit verbessertem Management lösen oder vermeiden
Air quality in the Industrial Heartland of Alberta, Canada and potential impacts on human health.
The "Industrial Heartland" of Alberta is Canada's largest hydrocarbon processing center, with more than 40 major chemical, petrochemical, and oil and gas facilities. Emissions from these industries affect local air quality and human health. This paper characterizes ambient levels of 77 volatile organic compounds (VOCs) in the region using high-precision measurements collected in summer 2010. Remarkably strong enhancements of 43 VOCs were detected, and concentrations in the industrial plumes were often similar to or even higher than levels measured in some of the world's largest cities and industrial regions. For example maximum levels of propene and i-pentane exceeded 100 ppbv, and 1,3-butadiene, a known carcinogen, reached 27 ppbv. Major VOC sources included propene fractionation, diluent separation and bitumen processing. Emissions of the measured VOCs increased the hydroxyl radical reactivity (kOH), a measure of the potential to form downwind ozone, from 3.4 s-1 in background air to 62 s-1 in the most concentrated plumes. The plume value was comparable to polluted megacity values, and acetaldehyde, propene and 1,3-butadiene contributed over half of the plume kOH. Based on a 13-year record (1994-2006) at the county level, the incidence of male hematopoietic cancers (leukemia and non-Hodgkin lymphoma) was higher in communities closest to the Industrial Heartland compared to neighboring counties. While a causal association between these cancers and exposure to industrial emissions cannot be confirmed, this pattern and the elevated VOC levels warrant actions to reduce emissions of known carcinogens, including benzene and 1,3-butadiene
- …