9 research outputs found

    Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a pronounced neurodegenerative component. It has been suggested that novel treatment options are needed that target both aspects of the disease. Evidence from basic and clinical studies suggests that testosterone has an immunomodulatory as well as a potential neuroprotective effect that could be beneficial in MS.</p> <p>Methods</p> <p>Ten male MS patients were treated with 10 g of gel containing 100 mg of testosterone in a cross-over design (6 month observation period followed by 12 months of treatment). Blood samples were obtained at three-month intervals during the observation and the treatment period. Isolated blood peripheral mononuclear cells (PBMCs) were used to examine lymphocyte subpopulation composition by flow cytometry and <it>ex vivo </it>protein production of cytokines (IL-2, IFNγ, TNFα, IL-17, IL-10, IL-12p40, TGFβ1) and growth factors (brain-derived neurotrophic factor BDNF, platelet-derived growth factor PDGF-BB, nerve growth factor NGF, and ciliary neurotrophic factor CNTF). Delayed type hypersensitivity (DTH) skin recall tests were obtained before and during treatment as an <it>in vivo </it>functional immune measure.</p> <p>Results</p> <p>Testosterone treatment significantly reduced DTH recall responses and induced a shift in peripheral lymphocyte composition by decreasing CD4+ T cell percentage and increasing NK cells. In addition, PBMC production of IL-2 was significantly decreased while TGFβ1 production was increased. Furthermore, PBMCs obtained during the treatment period produced significantly more BDNF and PDGF-BB.</p> <p>Conclusion</p> <p>These results are consistent with an immunomodulatory effect of testosterone treatment in MS. In addition, increased production of BDNF and PDGF-BB suggests a potential neuroprotective effect.</p> <p>Trial Registration</p> <p>NCT00405353 <url>http://www.clinicaltrials.gov</url></p

    Smaller cornu ammonis 2-3/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms.

    No full text
    BACKGROUND: The hippocampus is likely involved in mood disorders, but in vivo evidence for the role of anatomically distinct hippocampal subregions is lacking. Multiple sclerosis, an inflammatory disease of the central nervous system, is linked to a high prevalence of depression as well as hippocampal damage and may thus provide important insight into the pathologic correlates of medical depression. We examined the role of subregional hippocampal volume for depression in relapsing-remitting multiple sclerosis.METHODS: Anatomically defined hippocampal subregional volumes (cornu ammonis 1-3 [CA1-CA3] and the dentate gyrus [CA23DG], subiculum, entorhinal cortex) were measured using a high-resolution T2-weighted magnetic resonance imaging sequence in 29 relapsing-remitting multiple sclerosis patients and 20 matched healthy control subjects. Diurnal salivary cortisol was assessed at awakening, 4 pm, and 9 pm on 2 consecutive days. Subjects also completed the Beck Depression Inventory.RESULTS: Multiple sclerosis patients showed smaller hippocampal volumes compared with control subjects, particularly in the CA1 and subiculum subregions. In addition, multiple sclerosis patients with depressive symptoms (Beck Depression Inventory score &gt;13) also showed smaller CA23DG volumes and higher cortisol levels. Within the multiple sclerosis group, CA23DG volume was correlated with depressive symptoms and cortisol levels. There were no associations with number of previous steroid treatments, global atrophy, or disease duration.CONCLUSIONS: This report provides in vivo evidence for selective association of smaller CA23DG subregional volumes in the hippocampus with cortisol hypersecretion and depressive symptoms in multiple sclerosis

    Design, rationale, and baseline characteristics of the randomized double-blind phase II clinical trial of ibudilast in progressive multiple sclerosis

    No full text
    BACKGROUND: Primary and secondary progressive multiple sclerosis (MS), collectively called progressive multiple sclerosis (PMS), is characterized by gradual progression of disability. The current anti-inflammatory treatments for MS have little or no efficacy in PMS in the absence of obvious active inflammation. Optimal biomarkers for phase II PMS trials is unknown. Ibudilast is an inhibitor of macrophage migration inhibitor factor and phosphodiesterases-4 and -10 and exhibits possible neuroprotective properties. The goals of SPRINT-MS study are to evaluate the safety and efficacy of ibudilast in PMS and to directly compare several imaging metrics for utility in PMS trials. METHODS: SPRINT-MS is a randomized, placebo-controlled, phase II trial of ibudilast in patients with PMS. Eligible subjects were randomized 1:1 to receive either ibudilast (100 mg/day) or placebo for 96 weeks. Imaging is conducted every 24 weeks for whole brain atrophy, magnetization transfer ratio, diffusion tensor imaging, cortical brain atrophy, and retinal nerve fiber layer thickness. Clinical outcomes include neurologic disability and patient reported quality of life. Safety assessments include laboratory testing, electrocardiography, and suicidality screening. RESULTS: A total of 331 subjects were enrolled, of which 255 were randomized onto active study treatment. Randomized subjects were 53.7% female and mean age 55.7 (SD 7.3) years. The last subject is projected to complete the study in May 2017. CONCLUSION: SPRINT-MS is designed to evaluate the safety and efficacy of ibudilast as a treatment for PMS while simultaneously validating five different imaging biomarkers as outcome metrics for use in future phase II proof-of-concept PMS trials
    corecore