731 research outputs found

    Remote State Preparation

    Full text link
    Quantum teleportation uses prior entanglement and forward classical communication to transmit one instance of an unknown quantum state. Remote state preparation (RSP) has the same goal, but the sender knows classically what state is to be transmitted. We show that the asymptotic classical communication cost of RSP is one bit per qubit - half that of teleportation - and becomes even less when transmitting part of a known entangled state. We explore the tradeoff between entanglement and classical communication required for RSP, and discuss RSP capacities of general quantum channels.Comment: 4 pages including 1 epsf figure; v3 has an additional author and discusses relation to work of Devetak and Berger (quant-ph/0102123); v4 improves low-entanglement protocols without back communication to perform as well as low-entanglement protocols with back communication; v5 (journal version) has a few small change

    Hiding bits in Bell states

    Get PDF
    We present a scheme for hiding bits in Bell states that is secure even when the sharers Alice and Bob are allowed to carry out local quantum operations and classical communication. We prove that the information that Alice and Bob can gain about a hidden bit is exponentially small in nn, the number of qubits in each share, and can be made arbitrarily small for hiding multiple bits. We indicate an alternative efficient low-entanglement method for preparing the shared quantum states. We discuss how our scheme can be implemented using present-day quantum optics.Comment: 4 pages RevTex, 1 figure, various small changes and additional paragraph on optics implementatio

    An information-theoretic security proof for QKD protocols

    Full text link
    We present a new technique for proving the security of quantum key distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the BB84, the six-state, and the B92 protocol with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.Comment: 18 pages, 3 figure

    The asymptotic entanglement cost of preparing a quantum state

    Get PDF
    We give a detailed proof of the conjecture that the asymptotic entanglement cost of preparing a bipartite state \rho is equal to the regularized entanglement of formation of \rho.Comment: 7 pages, no figure

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form

    Weak force detection with superposed coherent states

    Get PDF
    We investigate the utility of non classical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single mode superposition states with the same mean photon number.Comment: 6 pages, no figures: New section added on entangled resources. Changes to discussions and conclusio

    Evidence for Bound Entangled States with Negative Partial Transpose

    Get PDF
    We exhibit a two-parameter family of bipartite mixed states ρbc\rho_{bc}, in a ddd\otimes d Hilbert space, which are negative under partial transposition (NPT), but for which we conjecture that no maximally entangled pure states in 222\otimes 2 can be distilled by local quantum operations and classical communication (LQ+CC). Evidence for this undistillability is provided by the result that, for certain states in this family, we cannot extract entanglement from any arbitrarily large number of copies of ρbc\rho_{bc} using a projection on 222\otimes 2. These states are canonical NPT states in the sense that any bipartite mixed state in any dimension with NPT can be reduced by LQ+CC operations to an NPT state of the ρbc\rho_{bc} form. We show that the main question about the distillability of mixed states can be formulated as an open mathematical question about the properties of composed positive linear maps.Comment: Revtex, 19 pages, 2 eps figures. v2,3: very minor changes, submitted to Phys. Rev. A. v4: minor typos correcte

    The entanglement of purification

    Get PDF
    We introduce a measure of both quantum as well as classical correlations in a quantum state, the entanglement of purification. We show that the (regularized) entanglement of purification is equal to the entanglement cost of creating a state ρ\rho asymptotically from maximally entangled states, with negligible communication. We prove that the classical mutual information and the quantum mutual information divided by two are lower bounds for the regularized entanglement of purification. We present numerical results of the entanglement of purification for Werner states in H2H2{\cal H}_2 \otimes {\cal H}_2.Comment: 12 pages RevTex, 1 figure, to appear in JMP special issue on quantum information. v3 contains additional references, motivation, and a small change in the figur

    On asymptotic continuity of functions of quantum states

    Full text link
    A useful kind of continuity of quantum states functions in asymptotic regime is so-called asymptotic continuity. In this paper we provide general tools for checking if a function possesses this property. First we prove equivalence of asymptotic continuity with so-called it robustness under admixture. This allows us to show that relative entropy distance from a convex set including maximally mixed state is asymptotically continuous. Subsequently, we consider it arrowing - a way of building a new function out of a given one. The procedure originates from constructions of intrinsic information and entanglement of formation. We show that arrowing preserves asymptotic continuity for a class of functions (so-called subextensive ones). The result is illustrated by means of several examples.Comment: Minor corrections, version submitted for publicatio

    Quantum computing with antiferromagnetic spin clusters

    Full text link
    We show that a wide range of spin clusters with antiferromagnetic intracluster exchange interaction allows one to define a qubit. For these spin cluster qubits, initialization, quantum gate operation, and readout are possible using the same techniques as for single spins. Quantum gate operation for the spin cluster qubit does not require control over the intracluster exchange interaction. Electric and magnetic fields necessary to effect quantum gates need only be controlled on the length scale of the spin cluster rather than the scale for a single spin. Here, we calculate the energy gap separating the logical qubit states from the next excited state and the matrix elements which determine quantum gate operation times. We discuss spin cluster qubits formed by one- and two-dimensional arrays of s=1/2 spins as well as clusters formed by spins s>1/2. We illustrate the advantages of spin cluster qubits for various suggested implementations of spin qubits and analyze the scaling of decoherence time with spin cluster size.Comment: 15 pages, 7 figures; minor change
    corecore