19 research outputs found

    Brain training using cognitive apps can improve cognitive performance and processing speed in older adults.

    Get PDF
    Managing age-related decrease of cognitive function is an important public health challenge, especially in the context of the global aging of the population. Over the last years several Cognitive Mobile Games (CMG) have been developed to train and challenge the brain. However, currently the level of evidence supporting the benefits of using CMG in real-life use is limited in older adults, especially at a late age. In this study we analyzed game scores and the processing speed obtained over the course of 100 sessions in 12,000 subjects aged 60 to over 80 years. Users who trained with the games improved regardless of age in terms of scores and processing speed throughout the 100 sessions, suggesting that old and very old adults can improve their cognitive performance using CMG in real-life use

    The use of commercial computerised cognitive games in older adults: a meta-analysis

    Get PDF
    Funder: Fondation Philippe Wiener - Maurice Anspach; doi: http://dx.doi.org/10.13039/501100003138Funder: NIHR MedTech and in vitro diagnostic Co-operative (MIC)Funder: NIHR Cambridge Biomedical Research Centre (BRC) Mental Health themeAbstract: Brain training programs are currently one effective solution to prevent cognitive decline in healthy aging. We conducted a meta-analysis of randomized controlled trials assessing the use of commercially available computerised cognitive games to improve cognitive function in people aged above 60 years old without cognitive impairment. 1,543 participants from sixteen studies were included in the meta-analysis. Statistically significant improvements were observed for processing speed (SMD increased 0.40 [95% CI 0.20–0.60], p < 0.001), working memory (0.21 [95% CI 0.08–0.34], p = 0.001), executive function (0.21 [95% CI 0.06–0.35], p = 0.006), and for verbal memory (0.12 [95% CI 0.01–0.24, p = 0.031), but not for attention or visuospatial abilities. No relationship between the age of the participants and the amount of training was found. Commercially available computerised cognitive games are effective in improving cognitive function in participants without cognitive impairment aged over 60 years

    EMOTICOM: A Neuropsychological Test Battery to Evaluate Emotion, Motivation, Impulsivity, and Social Cognition.

    Get PDF
    In mental health practice, both pharmacological and non-pharmacological treatments are aimed at improving neuropsychological symptoms, including cognitive and emotional impairments. However, at present there is no established neuropsychological test battery that comprehensively covers multiple affective domains relevant in a range of disorders. Our objective was to generate a standardized test battery, comprised of existing, adapted and novel tasks, to assess four core domains of affective cognition (emotion processing, motivation, impulsivity and social cognition) in order to facilitate and enhance treatment development and evaluation in a broad range of neuropsychiatric disorders. The battery was administered to 200 participants aged 18-50 years (50% female), 42 of whom were retested in order to assess reliability. An exploratory factor analysis identified 11 factors with eigenvalues greater than 1, which accounted for over 70% of the variance. Tasks showed moderate to excellent test-retest reliability and were not strongly correlated with demographic factors such as age or IQ. The EMOTICOM test battery is therefore a promising tool for the assessment of affective cognitive function in a range of contexts.This is the final version of the article. It first appeared from Frontiers via http://dx.doi.org/10.3389/fnbeh.2016.0002

    Neural Biomarkers Distinguish Severe From Mild Autism Spectrum Disorder Among High-Functioning Individuals.

    Get PDF
    Several previous studies have reported atypicality in resting-state functional connectivity (FC) in autism spectrum disorder (ASD), yet the relatively small effect sizes prevent us from using these characteristics for diagnostic purposes. Here, canonical correlation analysis (CCA) and hierarchical clustering were used to partition the high-functioning ASD group (i.e., the ASD discovery group) into subgroups. A support vector machine (SVM) model was trained through the 10-fold strategy to predict Autism Diagnostic Observation Schedule (ADOS) scores within the ASD discovery group (r = 0.30, P < 0.001, n = 260), which was further validated in an independent sample (i.e., the ASD validation group) (r = 0.35, P = 0.031, n = 29). The neuroimage-based partition derived two subgroups representing severe versus mild autistic patients. We identified FCs that show graded changes in strength from ASD-severe, through ASD-mild, to controls, while the same pattern cannot be observed in partitions based on ADOS score. We also identified FCs that are specific for ASD-mild, similar to a partition based on ADOS score. The current study provided multiple pieces of evidence with replication to show that resting-state functional magnetic resonance imaging (rsfMRI) FCs could serve as neural biomarkers in partitioning high-functioning autistic individuals based on their symptom severity and showing advantages over traditional partition based on ADOS score. Our results also indicate a compensatory role for a frontocortical network in patients with mild ASD, indicating potential targets for future clinical treatments

    Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study.

    Get PDF
    OBJECTIVES: Cognitive flexibility, which is key for adaptive decision-making, engages prefrontal cortex (PFC)-striatal circuitry and is impaired in both manifest and premanifest Huntington's disease (pre-HD). The aim of this study was to examine cognitive flexibility in a far from onset pre-HD cohort to determine whether an early impairment exists and if so, whether fronto-striatal circuits were associated with this deficit. METHODS: In the present study, we examined performance of 51 pre-HD participants (mean age=29.22 (SD=5.71) years) from the HD Young Adult Study cohort and 53 controls matched for age, sex and IQ, on the Cambridge Neuropsychological Test Automated Battery (CANTAB) Intra-Extra Dimensional Set-Shift (IED) task. This cohort is unique as it is the furthest from disease onset comprehensively studied to date (mean years=23.89 (SD=5.96) years). The IED task measures visual discrimination learning, cognitive flexibility and specifically attentional set-shifting. We used resting-state functional MRI to examine whether the functional connectivity between specific fronto-striatal circuits was dysfunctional in pre-HD, compared with controls, and whether these circuits were associated with performance on the critical extradimensional shift stage. RESULTS: Our results demonstrated that the CANTAB IED task detects a mild early impairment in cognitive flexibility in a pre-HD group far from onset. Attentional set-shifting was significantly related to functional connectivity between the ventrolateral PFC and ventral striatum in healthy controls and to functional connectivity between the dorsolateral PFC and caudate in pre-HD participants. CONCLUSION: We postulate that this incipient impairment of cognitive flexibility may be associated with intrinsically abnormal functional connectivity of fronto-striatal circuitry in pre-HD

    Sub-cortical Dementia

    No full text
    corecore