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Several previous studies have reported atypicality in resting-state functional connectivity
(FC) in autism spectrum disorder (ASD), yet the relatively small effect sizes prevent us
from using these characteristics for diagnostic purposes. Here, canonical correlation
analysis (CCA) and hierarchical clustering were used to partition the high-functioning
ASD group (i.e., the ASD discovery group) into subgroups. A support vector machine
(SVM) model was trained through the 10-fold strategy to predict Autism Diagnostic
Observation Schedule (ADOS) scores within the ASD discovery group (r = 0.30,
P < 0.001, n = 260), which was further validated in an independent sample (i.e., the ASD
validation group) (r = 0.35, P = 0.031, n = 29). The neuroimage-based partition derived
two subgroups representing severe versus mild autistic patients. We identified FCs that
show graded changes in strength from ASD-severe, through ASD-mild, to controls,
while the same pattern cannot be observed in partitions based on ADOS score. We also
identified FCs that are specific for ASD-mild, similar to a partition based on ADOS score.
The current study provided multiple pieces of evidence with replication to show that
resting-state functional magnetic resonance imaging (rsfMRI) FCs could serve as neural
biomarkers in partitioning high-functioning autistic individuals based on their symptom
severity and showing advantages over traditional partition based on ADOS score. Our
results also indicate a compensatory role for a frontocortical network in patients with
mild ASD, indicating potential targets for future clinical treatments.

Keywords: autism spectrum disorder, functional magnetic resonance imaging, high-functioning autism, neural
biomarker, autism diagnostic observation schedule
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental
condition characterized by qualitative impairment in
social communication, as well as restricted and repetitive
behaviors (American Psychiatric Association, 2013), and affects
approximately 1% of children globally (Kim et al., 2011; Baio
et al., 2018). Although more recent conceptualization of ASD
considers symptoms on a spectrum ranging from mild to severe,
a categorical stratification of ASD based on the severity of
symptom presentation is often made for diagnostic purposes
(Lord et al., 2000). Currently, ASD diagnosis is entirely guided
by behavioral indices, which has been criticized for its high
heterogeneity in both phenotypic presentation and etiology
(Ecker and Murphy, 2014). For example, a large portion
of children with ASD (11–60%) also have mild intellectual
disability, i.e., intelligence quotient (IQ) lower than 70 (Baio
et al., 2018; Lord et al., 2018), largely attributing to a range of
rare de novo mutations (Sanders et al., 2015; Weiner et al., 2017).
The recent development in neuroscience has provided insights
into the potential of neural biomarkers to characterize ASD
(Ecker and Murphy, 2014; Eilam-Stock et al., 2014; Cheng et al.,
2015, 2017; Jack and Pelphrey, 2017; Holiga et al., 2019), e.g.,
identifying the middle temporal, prefrontal, and parietal areas
(Cheng et al., 2015; Holiga et al., 2019) as hub regions enriched
with functional connectivities (FCs) that distinguish autistic
patients from controls. However, no previous MRI study has
found effect sizes large enough to indicate that brain structure or
function could be used as a diagnostic marker. This has prompted
a shift to focus on the identification of stratification biomarkers
to parse this heterogeneous condition into more homogeneous
subgroups (Loth et al., 2016). Previous studies have explored
the use of neural features from fMRI data to identify subgroups
of autistic patients (Groen et al., 2010; Lombardo et al., 2018),
although few of them have directly targeted the diagnostic scales,
such as Autism Diagnostic Observation Schedule (ADOS).
Moreover, few studies have evaluated the agreement between
biomarker-based stratification of ASD patients and differences in
clinical symptom profile or severity.

In this study, we first investigated if resting-state functional
brain networks could be used as stratification and prediction
biomarkers for the severity of autism (measured by ADOS)
among a group of high-functioning autistic participants (IQ
≥ 70) (Baio et al., 2018; Lord et al., 2018) using a series
of multivariate statistical approaches including canonical
correlation analysis (CCA), hierarchical clustering (Jia et al.,
2016; Drysdale et al., 2017), and support vector machine (SVM)
(Chang and Lin, 2011). We then further investigated specific
neural biomarkers among stratified ASD groups, as well as
subgroups of ASD compared with control.

MATERIALS AND METHODS

Functional Connectivity Data
Preprocessing
The study samples were derived from the Autism Brain Imaging
Data Exchange (ABIDE) I and II (Di Martino et al., 2014),

released in 2012 and 2016, respectively. Approval was required
by the respective site Institutional Review Board (IRB). All
participants’ autistic symptoms (measured using ADOS), as well
as resting-state functional magnetic resonance imaging (rsfMRI)
data, were collected from multiple data acquisition sites across
the globe. More details on data acquisition can be found on the
initiative’s website1.

The rsfMRI data were preprocessed following a standard
pipeline2, which included slice timing correction, motion
correction, spatial smoothing (full-width half maximum =
6 mm), despiking motion artifacts using the BrainWavelet
Toolbox (Patel et al., 2014; Patel and Bullmore, 2016),
registering to MNI152 standard space with a voxel size of
2 mm × 2 mm × 2 mm by first aligning the functional image
to the individual T1 structural image using boundary-based
registration (Greve and Fischl, 2009) and then to standard space
by FSL’s tool FLIRT3 and FNIRT4; nuisance covariates including
Friston 24 head motion parameters (Friston et al., 1996), white
matter signal, cerebrospinal fluid signal (obtained by FSL’s tool
FAST5), and global signal were regressed out from the blood
oxygen level-dependent (BOLD) signal and band-pass filtering
(0.01–0.1 Hz) by AFNI (Cox, 1996). The processed imaging data
of all subjects were visually checked for quality control.

The 2nd edition of the Automated Anatomical Labeling Atlas
(AAL-2) template (Rolls et al., 2015) was used to parcellate
the brain into 94 regions of interest (ROIs) (Supplementary
Table 1) (Cheng et al., 2019). The time series were then extracted
in each ROI by averaging the signals of all voxels included,
leading to 94 functional nodes spanning across the brain. For
each pair of nodes in this brain pairwise analysis, their Pearson
correlation coefficients were calculated followed by the Fisher
z-transformation of FCs. Finally, standardized z-scores were
calculated for each subject’s FCs to make them comparable across
subjects and sites (Supplementary Figures 1, 2). Therefore, for
each subject, the constructed brain network consisted of 94 brain
regions and 4,371 (i.e., 94 × 93

2 = 4, 371) FCs.

Sample Inclusive/Exclusive Criteria
Subjects selected for the current investigation included those who
(i) had a full IQ score equal or exceeding 70, (ii) mean framewise
displacement did not exceed 0.5 mm, and (iii) aged 6–30 years at
the time of assessment. To match our statistical analysis purposes,
we selected participants and divided them into three groups:
the ASD group, the control group, and the independent ASD
validation group. The ASD group was selected using the following
inclusion criteria: (i) had a diagnosis of autism in either ABIDE
I or II and (ii) had an ADOS total score higher than seven
following the diagnostic recommendation (Lord et al., 2000),
including Asperger’s and pervasive developmental disorder not
otherwise specified [i.e., in line with the term ASD as described in
the Diagnostic and Statistical Manual of Mental Disorders (Fifth
Edition) (DSM-V)]. Note that ADOS total score was calculated

1 http://fcon_1000.projects.nitrc.org/indi/abide/
2https://github.com/weikanggong/Resting-state-fMRI-preprocessing
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FNIRT
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST
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differently in one study site than the rest. Therefore, we re-
calculated ADOS total score across all sites to be the additive
score of the ADOS Communication subscale score and ADOS
Social Interaction subscale score following suggestions Lord et al.
(2000) (Supplementary Table 2); and (iii) from sites with three or
more ASD subjects who met the same criteria, to avoid unreliable
estimation of site effect.

The ASD patients were further separated into a discovery
group, which has complete information for all ADOS subscales
mandated for the fMRI feature selection in the training
procedure, and a validation group, which has at least one subscale
of ADOS missing, thus only serving as the testing sample.
The control group of participants was selected from the sites
where the ASD group was also selected. Each control subject
was recorded as “healthy control” in either ABIDE I or II. The
independent ASD validation group consisted of participants who
were (i) diagnosed with ASD without a pre-calculated ADOS total
score and (ii) from sites that have not been selected in either of the
two testing samples.

As a result of subject selection and quality control, 260
participants in the ASD discovery group, 574 in the control
group, and 29 in the ASD validation group were included in
the current study. Demographic information is summarized
in Table 1. There is no difference in IQ, gender ratio, and
age between the ASD discovery and ASD validation groups.
Confounding factors such as the full IQ, gender, age, mean
framewise displacement, and site were regressed out in the
following analysis unless otherwise specified. The methods
were implemented using the software MATLAB [Version:
9.5.0.944444 (R2018b)].

Statistical Analysis
Detailed data analysis strategy is outlined in Figure 1. Prior to
statistical modeling, we calculated Spearman’s rank correlation
matrices between 4,371 FCs and three ADOS subscales
(communication, social interaction, and restricted/stereotyped
behaviors) among participants from the ASD discovery group.
Only FCs in Spearman’s rank correlation (threshold P < 0.005)
with at least one ADOS subscales were included, which was used
to reduce the number of FCs entered into the CCA.

The above threshold P < 0.005 was set to select a sufficient
amount of but not too many FCs. While there is no gold

standard to choose such a threshold, it has been suggested that too
stringent a threshold is likely to omit informative features, while
an over-relaxed one will end up with too many non-informative
FCs as well as risking for serious overfitting problems. The
detailed calculations of selected FCs based on different thresholds
of P-values are summarized in Supplementary Table 3.

We investigated the effectiveness of using functional networks
to differentiate mild from severe high-functioning ASD
patients in two ways.

(1) FC-based stratification of high-functioning ASD patients
and its effectiveness to differentiate symptom severity.

First, CCA was applied to further reduce the remaining
FCs derived above into three orthogonal components that
maximized the explained variance of three ADOS subscales.
Due to the inevitable overfitting of the combination of the
FC selection process and CCA, the P-values of the overall
correlation (measured by η2, i.e., 1 − Wilk’s λ) and each
component correlation were assessed through a permutation
test (Dinga et al., 2019); at each of the 10,000 iterations, the
ADOS subscales were randomly shuffled, and the whole process
(including selecting the same number of top FCs to keep feature
to sample radio based on its Spearman’s rank correlation with
ADOS subscales to a matched number) was re-conducted, thus
providing an empirical null distribution of each CCA statistic,
i.e., η2 and component correlations, which accounted for the
overfitting due to both the FC selection process and the CCA.
Based on the same permutation process described above, we
also provided an adjusted η2 (i.e., adj-η2) that accounted for the
inflation of η2 due to the overfitting of both the FC selection
process and the CCA (Jia et al., 2020).

Next, the significant FC components were entered into a
hierarchical clustering analysis with Euclidean distance and the
Ward method. Note that due to the nature of the hierarchical
clustering algorithm, the two-cluster partition serves as a default
option that further clustering makes no sense unless the two-
cluster partition is meaningful, which could be confirmed if the
ADOS total scores of the two partitions from the hierarchical
clustering were significantly different using a two-sample t-test.
Note that the corresponding P-values were again assessed
by using the permutation process described above (i.e., re-
conducting all processes, including the FC selection, CCA, and

TABLE 1 | Sample characteristics.

ASD-discovery Healthy controls ASD-validation ASD-discovery vs. control ASD-discovery vs. ASD-validation

Sample size 260 574 29

Full IQ 105.15 (16.28) 114.43 (12.63) 108.48 (16.87) t = −8.95; t = −1.04;

Mean (SD) Cohen’s D = −0.67; Cohen’s D = −0.20;

P < 0.001 P = 0.298

Age: 15.24 (5.83) 13.16 (5.10) 16.91 (3.01) t = 5.22; t = −1.52;

Mean (SD) Cohen’s D = 0.39; Cohen’s D = −0.30;

P < 0.001 P = 0.130

Male % 91.15% 70.56% 93.10% P < 0.001 P = 0.724

ASD, autism spectrum disorder.
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FIGURE 1 | Flowchart of study aims, methods, and results.

hierarchical clustering at each of 10,000 iterations) to establish
the null distribution of the two-sample t-statistic where no real
partition was present. In addition, we also investigated if further
clustering (i.e., from 3 to 10) could be superior over the default
choice of two through the silhouette method (Rousseeuw, 1987).
To further evaluate if the partitioned subgroups were of clinical
relevance, we assessed the agreement between our FC-based
nonparametric stratification and the traditional behavior-based
parametric classification of severe versus mild ASD patients
based on chosen cutoffs of the ADOS total score, i.e., the
percentage of agreement (PoA), the true positive rate to identify
a severe ASD patient (sensitivity) and the true negative rate to
identify a mild ASD patient (specificity). Please note that due
to the lack of known gold standard for the severe versus mild
partition of ASD patients, we calculated two sets of receiver
operating characteristic (ROC) curves, i.e., one with the FC-
based nonparametric partition as the reference and one with the
partition at each ADOS cutoff as the reference.

The last step in this set of analyses involved comparing the two
ASD discovery subgroups (i.e., severe and mild in ASD) against
the control group on the 4,371 FCs using two-sample t-tests [P <
0.05, false discovery rate (FDR) correction], to investigate if the
patterns of differentiated FCs among the three groups (with the
hypothesis of a graded change of FC strengths from the control,
through mild, to severe groups; i.e., it is the same FCs with similar
effects that could distinguish the severe ASD group from the mild
ASD group, and the mild ASD group from the control group).

Specifically, we first multiplied −1 to those FCs with a negative
t-statistics; i.e., FCs were found smaller in the severe or mild
ASD groups than in the control group. Such a process simplified
the testing hypothesis into a graded increase of FCs from the
control, through mild, to severe groups; Then, we summed up all
hence derived FCs in each group (i.e., the control, mild, or severe
group); and the t-tests between paired groups, i.e., “severe versus
mild” and “mild versus control,” were calculated to investigate if
the given hypothesis of graded change was satisfied. The graded
change in each individual FC was also investigated.

The same procedure with the FCs identified in the above
analysis was also conducted between partitions derived based on
given thresholds of ADOS total scores.

(2) FC-based prediction of ADOS scores in high-functioning
ASD patients.

First, we further selected the statistically significant FCs (P <
0.05 after FDR) among the initially selected top FCs by assessing
the significance of differences between the ASD discovery mild
and severe subgroups derived above. We then trained an SVM
model [LIBSVM: library for SVMs (Cortes and Vapnik, 1995;
Chang and Lin, 2011); SVM type: multi-class classification; kernel
type: radial basis function] in the ASD discovery group (n = 260)
to predict each individual’s ADOS total scores, using a 10-fold
strategy. Iteratively, the SVM model was trained with 234 out
of 260 subjects to predict the leftover 26 subjects’ ADOS total
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score. After 10 iterations, the Pearson correlation between the
predicted and observed ADOS total scores (n = 260) was then
calculated to evaluate the accuracy of prediction. To alleviate the
issue of overfitting, we omitted the step of parameter selection
by using the default setting of the SVM model instead (Chang
and Lin, 2011). The SVM model trained above was then validated
in the ASD validation group (n = 29, leftover individuals due
to incomplete subscale information). The flowchart of validation
could be found in Supplementary Figure 3.

RESULTS

Functional Connectivity-Based
Stratification of High-Functioning ASD
Patients and Its Effectiveness to
Differentiate Symptom Severity
Spearman’s rank correlation identified 100 FCs in association
with at least one out of three ADOS subscales (communication,
social interaction, and restricted/stereotyped behaviors) with
balanced (the analysis with different statistical thresholds; see
Supplementary Table 3) P < 0.005 uncorrected. CCA revealed

three orthogonal components that explained η2 = 92.66% (Wilk’s
lambda = 0.0734, Ppermutation < 0.001; adj-η2 = 60.93%) of the
variance of across three ADOS sub-scores (R1 = 0.79, Ppermutation
< 0.001; R2 = 0.78, Ppermutation < 0.001; R3 = 0.70, Ppermutation
< 0.001; the permutation process includes both the steps of re-
selecting the top 100 FCs (i.e., maintaining feature to sample
radio = 100/260 = 38.46%) and CCA at each iteration and
therefore properly adjusted for any possible overfittings; see
section “Materials and Methods”; Figure 2A).

A hierarchical clustering (method: Ward) based on the three
components then partitioned the ASD discovery individuals
(i.e., with complete information of ADOS subscales; see section
“Materials and Methods”) into two subgroups (i.e., as the default
choice of hierarchical clustering; Figure 2B) that were further
found with significant differences on their ADOS total scores
(ASD-severe subgroup: mean = 14.07, SD = 3.27, n = 91; ASD-mild
subgroup: mean = 11.07, SD = 2.45, n = 169; Cohen’s D = 1.26,
t = 9.23, Ppermutation = 0.009; the permutation process includes
the FC selection process, CCA, and the hierarchical clustering
and therefore properly adjusted for any possible overfittings;
see section “Materials and Methods”; Figure 2C), which thus
confirmed the existence of two cluster. Follow-up analyses with

FIGURE 2 | Canonical correlation analysis (CCA) and hierarchical clustering. (A) The relation between three combinations of functional connectivities (FCs) and three
clinical symptom combinations, respectively (r > 0.7, Ppermutation < 0.001). (B) A hierarchical clustering (method: ward) partitioned the high-functioning autism
spectrum disorder (ASD) group into two subgroups (nmild = 169, isevere = 91). (C) Box figure of Autism Diagnostic Observation Schedule (ADOS) total score in the
two ASD subgroups. The ASD-severe subgroup (n = 91) has significantly higher ADOS total scores (t = 9.23, Ppermutation = 0.009) than the ASD-mild subgroup (n =
169). Full IQ, gender, age, and site were controlled for when calculating t and P-values. (D) Percentage of agreement between resting-state functional magnetic
resonance imaging (rsfMRI) FC-based stratification and segregation based on varied cutoffs at ADOS total score. (E) True positive rate (sensitivity) and true negative
rate (specificity) by setting varied ADOS cutoffs as the reference. (F) True positive rate (sensitivity) and true negative rate (specificity) by setting fMRI classification as
the reference.
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silhouette scores, which calculated with different cluster numbers
from 2 to 10, confirmed that the two-cluster partition was indeed
the optimal choice (i.e., the maximal silhouette score for two-
cluster, see Supplementary Table 4).

Our FC-based nonparametric partition of severe versus mild
ASD discovery subgroups showed high agreements (PoA >
70% at cutoffs 13, 14, . . ., 17; Figure 2D and Supplementary
Table 5) with segregations based on behavioral indices (i.e., the
ADOS total score) using different cutoff scores. By setting varied
ADOS cutoffs as the reference for the partition, the FC-based
nonparametric partition showed highly consistent specificity (i.e.,
true negative rate > 0.65 for all cutoffs) and sensitivity (i.e.,
true positive rate > 0.70 at cutoffs larger than 14) (Figure 2E
and Supplementary Table 5) in separating severe ASD patients
from mild ones, indicating a highly stable performance of FC-
based nonparametric partition even if the real classification is
ambiguous. In contrast, by setting the FC-based nonparametric
partition as the reference, a clear trade-off between specificity
and sensitivity of identifying severe ASD patients was observed,
with both larger than 0.60 only at ADOS total score of 11 and
12, i.e., with balanced sensitivity and specificity (Figure 2F and
Supplementary Table 5), which is in line with the recommended
clinical cutoff score (Lord et al., 2000).

Compared with the control group, the severe and mild ASD
discovery subgroups indeed revealed two sets of distinct FCs

characterizing each group separately (ASD-mild specific FCs:
Figure 3A and Table 2A; ASD-severe specific FCs: Figure 3C and
Table 2B). The ASD-mild specific FCs were stronger in the mild
subgroup than those in the severe subgroup (t = 2.35, Cohen’s
D = 0.32, P = 0.020), which were in turn stronger than the
same FCs in the control group (t = 7.25, Cohen’s D = 0.65, P <
0.001) (Supplementary Table 6). In particular, FC between the
left superior frontal gyrus (left SFG) and left middle frontal gyrus
(left MFG) showed significant differences in both comparisons
(severe vs. mild: t =−1.90, Cohen’s D =−0.26, Pone−tailed = 0.029;
severe vs. control: t = 1.68, Cohen’s D = 0.19, Pone−tailed = 0.046;
Figure 3B; Supplementary Table 7). The ASD-severe specific
FCs revealed a graded difference among the three groups with the
ASD-severe subgroup being the strongest and the control group
the weakest (severe vs. mild: t = 4.63, Cohen’s D = 0.63, Ptwo−tailed
< 0.001; mild vs. controls: t = 4.50, Cohen’s D = 0.40, Ptwo−tailed
< 0.001; Supplementary Table 6), particularly in univariate FCs
between the left anterior cingulate cortex (left ACC) and right
middle temporal gyrus (right MTG) (severe vs. mild: t = −1.73,
Cohen’s D = −0.24, Pone−tailed = 0.042; mild vs. controls: t =
−2.25, Cohen’s D = −0.20, Pone−tailed = 0.012), and between
the left orbital inferior frontal gyrus (left orbital IFG) and left
postcentral gyrus (left PCG) (severe vs. mild: t = 2.43, Cohen’s
D = 0.33, Pone−tailed = 0.008; mild vs. controls: t = 1.78, Cohen’s D
= 0.16, Pone−tailed = 0.038) (Figure 3D; Supplementary Table 8).

FIGURE 3 | Biomarker (subgroups vs. controls) and its tendency. (A) Stratification candidate biomarker between the autism spectrum disorder (ASD)-mild subgroup
and controls, corresponding to a threshold: false discovery rate (FDR) P < 0.05. (B) Three-group (controls, mild group, severe group) comparison on the ASD-mild
specific functional connectivities (FCs). (C) Stratification candidate biomarker between the ASD-severe subgroup and controls, corresponding to a threshold
(FDR P < 0.05). (D) Three-group (controls, mild group, severe group) comparison on the ASD-severe specific FCs.
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TABLE 2A | Biomarkers between mild groups and controls.

Functional connectivity t Cohen’s D Ptwo−tailed

Region 1 Region 2

Postcentral_L Thalamus_R 4.38 0.39 1.39E−05

Frontal_Sup_2_L Frontal_Mid_2_L 4.36 0.39 1.48E−05

Hippocampus_R Precuneus_L −4.25 −0.38 2.45E−05

TABLE 2B | Biomarker between severe groups and controls.

Functional connectivity t Cohen’s D Ptwo−tailed

Region 1 Region 2

Amygdala_L Heschl_L −4.54 −0.52 6.79E–06

Cingulate_Ant_L Temporal_Mid_R −4.48 −0.52 8.85E–06

Cingulate_Ant_L Temporal_Pole_Mid_R −4.34 −0.5 1.63E–05

Frontal_Inf_Orb_2_L Postcentral_L 4.15 0.48 3.85E–05

Precuneus_R Temporal_Inf_L −4.12 −0.47 4.37E–05

Postcentral_L Postcentral_R −4 −0.46 7.01E–05

Pallidum_R Temporal_Mid_L 3.99 0.46 7.50E–05

To address the large age span, we re-analyzed our main
results of neural biomarkers with an age-stratified approach by
partitioning individuals into three age bands (i.e., children, age
6–12; adolescents, age 12–18; adults, age 18–30) and found no
apparent difference across the three age bands according to
their effect sizes (i.e., Cohen’s D), except for the negative FC
between the trans-hemisphere PCGs, which showed a steadily
enlarged difference between the ASD-severe and controls along
with the increase of age (see Supplementary Tables 9A, B, for
details). Therefore, most neural biomarkers identified in the
present study are universally valid for all age bands. For the sex
differences, while females were relatively rare in both ASD groups
(seven out of 91 in the severe ASD group and 16 out of 169
in the mild-ASD group) and therefore unlikely to provide any
meaningful statistical inference, we conducted a gender-stratified
analysis nevertheless and observed no clear difference between
both genders (see Supplementary Tables 10A, B). Further, we
re-assessed the main results with the cutoff of mean framewise
displacement at 0.2 mm, and all significance remained, without
a clear difference from the original results (see Supplementary
Tables 11A, B).

Alternatively, we also partitioned the high-functioning autistic
patients into two subgroups with thresholds of ADOS total score
at 11 and 12, which, as shown above, is in line with recommended
clinical cutoffs as well as balancing the sensitivity and specificity
according to our FC-based nonparametric partition. With both
ADOS thresholds, we failed to observe the same significant
difference in strength between the severe and mild groups for
the ASD-severe specific FCs (t = 1.78, Cohen’s D = 0.24, P =
0.077 for cutoff at 11; t = 0.78, Cohen’s D = 0.11, P = 0.434
for cutoff at 12; Supplementary Table 12) with much reduced
effect sizes if compared with our FC-based partition (Cohen’s
D = 0.63, Supplementary Table 6). Univariately, only two FCs
between the left amygdala and left Heschl’s area and between

the right pallidum and left MTG remained nominally significant
(Supplementary Table 13) down from seven FCs with the FC-
based partition (Supplementary Table 6). However, ASD-mild
specific FCs were observed with significant stronger strength
in the mild group than in the severe group with ADOS cutoff
at 12 (t = 2.26, Cohen’s D = 0.31, P = 0.025, Supplementary
Table 12), similar to the FC-based partition (Cohen’s D = 0.32,
Supplementary Table 6) but not at 11 (t = 1.89, Cohen’s D = 0.26,
P = 0.061, Supplementary Table 12). Univariately, only the FC
between the left SFG and left MFG remains nominally significant
with ADOS cutoff at 12 (Supplementary Table 14).

Functional Connectivity-Based
Prediction of ADOS Scores in
High-Functioning ASD Patients
The top 20 FCs that were mostly different between the ASD-mild
and ASD-severe subgroups (P< 0.05 after FDR correction for the
100 top-selected FCs) are shown in Table 2C. Based on these 20
FCs, our trained model of SVM with default parameters through
a 10-fold strategy resulted in an inner sample correlation with a
moderate effect size between the predicted and observed scores (r
= 0.30, t = 4.99, Pone−tailed < 0.001, n = 260).

Next, by applying the trained SVM in the ASD validation
group (i.e., with ADOS total scores but incomplete subscale
information; see section “Materials and Methods” for more
details; Supplementary Figure 3), we also observe a significant
correlation with median strength between the predicted and
observed ADOS total scores (r = 0.35, t = 1.95, Pone−tailed = 0.031,

TABLE 2C | Biomarker of the severity of high-functioning ASD.

Functional connectivity t Cohen’s D Ptwo−tailed

Region 1 Region 2

Frontal_Sup_Medial_L Postcentral_R 5.42 0.74 1.44E−07

Supp_Motor_Area_L Temporal_Mid_L 3.85 0.53 1.51E−04

Frontal_Sup_Medial_R Postcentral_R 3.58 0.49 4.15E−04

Cingulate_Ant_R Postcentral_R 3.53 0.48 4.95E−04

Frontal_Inf_Orb_2_L Paracentral_Lobule_L 3.51 0.48 5.33E−04

Frontal_Mid_2_L SupraMarginal_R 3.33 0.46 1.01E−03

Precentral_L Precuneus_R −3.26 −0.45 1.29E−03

Frontal_Sup_Medial_L Temporal_Sup_L 3.24 0.44 1.37E−03

Cingulate_Post_R Pallidum_R 3.09 0.42 2.23E−03

Insula_L Cingulate_Post_R 3.07 0.42 2.43E−03

Frontal_Inf_Tri_L Pallidum_R 3.01 0.41 2.89E−03

Cingulate_Ant_R Amygdala_R 2.99 0.41 3.10E−03

Occipital_Inf_L Temporal_Pole_Sup_L 2.96 0.4 3.42E−03

Frontal_Mid_2_R Heschl_L 2.93 0.4 3.68E−03

Insula_R Fusiform_R −2.88 −0.39 4.30E−03

Precentral_R Frontal_Sup_Medial_L 2.8 0.38 5.51E−03

Angular_R Pallidum_R 2.8 0.38 5.62E−03

Postcentral_R Temporal_Mid_L 2.66 0.36 8.38E−03

Frontal_Inf_Oper_R OFCpost_L −2.6 −0.36 9.84E−03

Frontal_Inf_Tri_L OFCant_L −2.6 −0.36 9.87E−03

ASD, autism spectrum disorder.
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n = 29), thus confirming the reliability of the trained SVM model
as well as its underlying FCs (Table 2C).

DISCUSSION

The current study aimed to identify objective neural biomarkers
based on FC characteristics to stratify a highly heterogeneous
neurodevelopmental condition (ASD) into more homogeneous
subgroups. Through a newly developed statistical approach
combining CCA and hierarchical clustering to identify
candidate neural features that were further trained and
independently validated with a machine learning model, our
results demonstrated that rsfMRI FC-based stratification of
high-functioning ASD patients was effective in differentiating
severe from mild ASD patients, showing excellent consistency
with traditional behavior-based diagnostic segregations at varied
cutoffs of the ADOS scores. Interestingly, the FC strengths not
only showed a graded change between the two ASD subgroups
and healthy controls, but distinctive patterns of FCs also
emerged between the severe and mild ASD subgroups. Our
prediction model also showed a moderate effect in predicting
individual’s ADOS scores based on the strength of FCs, providing
evidence of the neural basis for a widely used clinical scale.
Additionally, we found a potential compensatory role of
frontal cortical areas in the mild subgroup, which might have
clinical implications.

The successful partition of severe versus mild ASD patients
solely based on FCs was highly consistent with the traditional
diagnostic criteria using ADOS scores, showing highly consistent
sensitivity and specificity no matter which ADOS cutoff was set
as the reference, which therefore suggests that our FC-based
nonparametric partition may serve as a better representation of
the true partition (i.e., the real segregation of severe vs. mild ASD
patients) than using varied cutoffs of the ADOS score.

This set of results provided scientific evidence for the potential
neural basis of clinical stratification of severe and mild ASD
patients, as well as suggesting candidate neural biomarkers that
can be used to diagnose subgroups of ASD patients effectively.
We further established an SVM model based on FCs that are
mostly attributed to the “mild” versus “severe” partition. This
model showed a good fitness of inner-sample prediction of
ADOS total score (r = 0.30) under a 10-fold strategy and has
also been successfully validated in an independent sample (r =
0.35). These effect sizes suggested that the predictors are only
moderate, although those effect sizes are still considered relatively
large in fMRI studies (Clements et al., 2018), thus confirming
the potential role of neural biomarkers in etiological pathways
for ASD severity.

The current investigation also identified two sets of univariate
stratification neural biomarkers that were most significantly
different between high-functioning ASD patients and controls
yet specific to each of the severe and mild subgroups of
ASD patients. In particular, seven FCs involving the temporal
areas, amygdala, ACC, PCG, and left IFG were found to be
most prominent in the ASD-severe subgroup, became weaker
in the ASD-mild subgroup, and then were the weakest in

healthy controls (Figures 3C,D, Table 2B, and Supplementary
Table 8), thus providing additional evidence to support the
FC-based severe versus mild segregation of high-functioning
ASD patients. We further showed that such a graded change in
strength could not be observed in traditional partitions based on
thresholding the ADOS total score (Supplementary Table 12),
thus indicating the advantages of our FC-based partition in the
clinical diagnosis of severe versus mild autism. Notably, FC
between the left amygdala and left Heschl’s area did not follow
this graded pattern (Figure 3D and Supplementary Table 8),
hence suggesting that the amygdala might only be involved at
a later and more severe developmental stage of ASD, which is
additionally supported by partitions based on ADOS total score
(Supplementary Table 13). It is notable that all these areas, i.e.,
the temporal areas (particularly the superior temporal sulcus),
amygdala, ACC, and left IFG, have been proposed as part of
the “social brain” (Frith, 2007; Adolphs, 2009) and hence are
in line with suggested ROIs for ASD (Cheng et al., 2015, 2017;
Holiga et al., 2019).

On the other hand, three FCs between the prefrontal areas,
PCG, and thalamus were found to exhibit a rather different
pattern, where these FCs were, in fact, the strongest among
the ASD-mild subgroup, weaker in the ASD-severe subgroup,
and then the weakest in healthy controls, suggesting that
these may be candidate neural biomarkers for mild ASD
specifically (Figure 3A, Table 2A, and Supplementary Table 7),
in particular the FC between the left SFG and the left MFG
(Figure 3A and Supplementary Table 7). While almost identical
results could be achieved with partition based on the ADOS
total score only at a certain threshold (i.e., 12, also see
Supplementary Tables 12, 14), the FC-based partition is free
from the uncertainty in choosing the optimal threshold for
the ADOS total score, which could vary across different age
bands (Lord et al., 2000) but could converge when investigating
with neural biomarkers. Nevertheless, this result suggests a
compensatory role of frontal areas such that a strengthened
dorsolateral prefrontal cortex (DLPFC) region might help to
reduce the symptoms in ASD patients, and such a claim is
further strengthened by the previous findings that repetitive
transcranial magnetic stimulation (rTMS) at DLPFC could
indeed improve relevant behaviors in ASD patients (Sokhadze
et al., 2009, 2010, 2012; Casanova et al., 2012; Oberman et al.,
2015). Therefore, we have established the neural basis for the
centrality role of DLPFC as a treatment target, especially in
those with severe symptoms. This promoted both noninvasive
cortical stimulation to strengthen the connectivity of this area and
behavioral treatment to improve cognitive function, including
top-down cognitive control by the DLPFC over behavior
(Elliott, 2003).

It is a limitation that although AAL series parcellation scheme
has good performance of analysis in FC in the past (Tao et al.,
2013; Cheng et al., 2019), this structure-based parcellation may
not fully incorporate the functional architecture of the human
brain. We also acknowledge that the results in this study may
only apply to individuals with ASD and without comorbid
intellectual disability, as only high-functioning ASD patients have
been investigated.
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CONCLUSION

In conclusion, we have provided multiple pieces of evidence,
with validation, to show that FCs of rsfMRI underlie the neural
basis of ASD severity. Specifically, we used FCs to partition
high-functioning autistic individuals into severe versus mild
subgroups, which exhibited advantages over the traditional
clinical partition based on the ADOS total score. In addition,
we showed that FCs could predict the ADOS total score in
high-functioning autistic individuals, as well as distinguish ASD
patients from controls. In addition, the strengthened FCs in the
prefrontal areas that are specific to the mild ASD may provide
a compensatory mechanism for the severity of ASD and thus
indicate promising targets for future clinical treatments.
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