58 research outputs found

    Expression of nicotinic acetylcholine receptor subunits from parasitic nematodes in Caenorhabditis elegans

    Get PDF
    The levamisole-sensitive nicotinic acetylcholine receptor present at nematode neuromuscular junctions is composed of multiple different subunits, with the exact composition varying between species. We tested the ability of two well-conserved nicotinic receptor subunits, UNC-38 and UNC-29, from Haemonchus contortus and Ascaris suum to rescue the levamisole-resistance and locomotion defects of Caenorhabditis elegans strains with null deletion mutations in the unc-38 and unc-29 genes. The parasite cDNAs were cloned downstream of the relevant C. elegans promoters and introduced into the mutant strains via biolistic transformation. The UNC-38 subunit of H. contortus was able to completely rescue both the locomotion defects and levamisole resistance of the null deletion mutant VC2937 (ok2896), but no C. elegans expressing the A. suum UNC-38 could be detected. The H. contortus UNC-29.1 subunit partially rescued the levamisole resistance of a C. elegans null mutation in unc-29 VC1944 (ok2450), but did cause increased motility in a thrashing assay. In contrast, only a single line of worms containing the A. suum UNC-29 subunit showed a partial rescue of levamisole resistance, with no effect on thrashing

    Increasing the expression of calcium-permeable TRPC3 and TRPC7 channels enhances constitutive secretion

    Get PDF
    The hTRPC [human TRPC (canonical transient receptor potential)] family of non-selective cation channels is proposed to mediate calcium influx across the plasma membrane via PLC (phospholipase C)-coupled receptors. Heterologously expressed hTRPC3 and hTRPC7 have been localized at the cell surface; however, a large intracellular component has also been noted but not characterized. In the present study, we have investigated the intracellular pool in COS-7 cells and have shown co-localization with markers for both the TGN (trans-Golgi network) and the cis-Golgi cisternae by immunofluorescence microscopy. Addition of BFA (Brefeldin A) to cells expressing hTRPC3 or hTRPC7 resulted in the redistribution of the Golgi component to the endoplasmic reticulum, indicating that this pool is present in both the Golgi stack and the TGN. Expression of either TRPC3 or TRPC7, but not TRPC1 or the cell surface marker CD8, resulted in a 2–4-fold increase in secreted alkaline phosphatase in the extracellular medium. Based on these results, we propose that an additional function of these members of the hTRPC family may be to enhance secretion either by affecting transport through the Golgi stack or by increasing fusion at the plasma membrane

    Lumenal and Transmembrane Domains Play a Role in Sorting Type I Membrane Proteins on Endocytic Pathways

    No full text
    Previous studies have shown that when the cytosolic domains of the type I membrane proteins TGN38 and lysosomal glycoprotein 120 (lgp120) are added to a variety of reporter molecules, the resultant chimeric molecules are localized to the trans-Golgi network (TGN) and to lysosomes, respectively. In the present study we expressed chimeric constructs of rat TGN38 and rat lgp120 in HeLa cells. We found that targeting information in the cytosolic domain of TGN38 could be overridden by the presence of the lumenal and transmembrane domains of lgp120. In contrast, the presence of the transmembrane and cytosolic domains of TGN38 was sufficient to deliver the lumenal domain of lgp120 to the trans-Golgi network. On the basis of steady-state localization of the various chimeras and antibody uptake experiments, we propose that there is a hierarchy of targeting information in each molecule contributing to sorting within the endocytic pathway. The lumenal and cytosolic domains of lgp120 contribute to sorting and delivery to lysosomes, whereas the transmembrane and cytosolic domains of TGN38 contribute to sorting and delivery to the trans-Golgi network

    Studies on glc-3, a potential target of Ivermectin in parasitic nematodes

    No full text
    International audienceThe free-living nematode Caenorhabditis elegans has been used for many years as an expression system for genes from parasitic species. We wished to further develop and improve this system by using CRISPR/Cas9 to delete specific genes from C. elegans and replace them with single copies of orthologous genes from the parasite, Haemonchus contortus. Initial experiments focussed on glc-3 which encodes a subunit of the glutamate-gated chloride channels, the target of the avermectin/milbemycin family of anthelmintics. We cloned the promoters from the glc-3 genes of both species and compared the expression patterns of mCherry under the control of both promoters. The C. elegans glc-3 promoter drove expression in a subset of head interneurons, as previously reported whereas the H. contortus promoter drove expression in a pharyngeal motoneuron, M4. We were able to generate heterozygous worms in which one copy of glc-3 was deleted, but we could never obtain homozygous knock-outs. Further investigation of the mRNAs encoded by glc-3 revealed a novel transcript, glc-3T, which encodes a severely truncated form of GLC-3. The presence of such truncated transcripts may explain the unexpected difficulties encountered in attempting to knock out ion channel genes in C. elegans

    Recognition and killing of Brugia malayi microfilariae by human immune cells is dependent on the parasite sample and is not altered by ivermectin treatment

    No full text
    Mass administration of macrocyclic lactones targets the transmission of the causative agents of lymphatic filariasis to their insect vectors by rapidly clearing microfilariae (Mf) from the circulation. It has been proposed that the anti-filarial action of these drugs may be mediated through the host immune system. We recently developed an in vitro assay for monitoring the attachment to and killing of B. malayi Mf by human neutrophils (PMNs) and monocytes (PBMCs), however, the levels of both cell to worm attachment and leukocyte mediated Mf killing varied greatly between individual experiments. To determine whether differences in an individual's immune cells or the Mf themselves might account for the variability in survival, PMNs and PBMCs were isolated from 12 donors every week for 4 weeks and the cells used for survival assays with a different batch of Mf, thereby keeping donors constant but varying the Mf sample. Results from these experiments indicate that, overall, killing is Mf-rather than donor-dependent. To assess whether ivermectin (IVM) or diethylcarbamazine (DEC) increase killing, Mf were incubated either alone or with immune cells in the presence of IVM or DEC. Neither drug induced a significant difference in the survival of Mf whether cultured with or without cells, with the exception of DEC at 2 h post incubation. In addition, human PBMCs and PMNs were incubated with IVM or DEC for 1 h or 16 h prior to RNA extraction and Illumina sequencing. Although donor-to-donor variation may mask subtle differences in gene expression, principle component analysis of the RNASeq data indicates that there is no significant change in the expression of any genes from the treated cells versus controls. Together these data suggest that IVM and DEC have little direct effect on immune cells involved in the rapid clearance of Mf from the circulation. Keywords: Brugia malayi, Ivermectin, Microfilariae, Neutrophils, Peripheral blood mononuclear cell
    corecore