24 research outputs found

    Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens

    Get PDF
    Amphibian skin is a mucosal surface in direct and continuous contact with a microbially diverse and laden aquatic and/or terrestrial environment. As such, frog skin is an important innate immune organ and first line of defence against pathogens in the environment. Critical to the innate immune functions of frog skin are the maintenance of physical, chemical, cellular, and microbiological barriers and the complex network of interactions that occur across all the barriers. Despite the global decline in amphibian populations, largely as a result of emerging infectious diseases, we understand little regarding the cellular and molecular mechanisms that underlie the innate immune function of amphibian skin and defence against pathogens. In this review, we discuss the structure, cell composition and cellular junctions that contribute to the skin physical barrier, the antimicrobial peptide arsenal that, in part, comprises the chemical barrier, the pattern recognition receptors involved in recognizing pathogens and initiating innate immune responses in the skin, and the contribution of commensal microbes on the skin to pathogen defence. We briefly discuss the influence of environmental abiotic factors (natural and anthropogenic) and pathogens on the immunocompetency of frog skin defences. Although some aspects of frog innate immunity, such as antimicrobial peptides are well-studied; other components and how they contribute to the skin innate immune barrier, are lacking. Elucidating the complex network of interactions occurring at the interface of the frog's external and internal environments will yield insight into the crucial role amphibian skin plays in host defence and the environmental factors leading to compromised barrier integrity, disease, and host mortality

    High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress

    Get PDF
    Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (Oncorhynchus mykiss), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.This research was funded through the Global Water Futures Grant #419205. HI is supported by an NSERC PGS-D

    Purification and characterization of a urea sensitive lactate dehydrogenase from the liver of the African clawed frog, Xenopus laevis

    No full text
    The African clawed frog, Xenopus laevis, is able to withstand extremely arid conditions by estivating, in conjunction with dehydration tolerance and urea accumulation. Estivating X. laevis reduce their metabolic rate and recruit anaerobic glycolysis, driven by lactate dehydrogenase (LDH; E.C. 1.1.1.27) enzymes that reversibly convert pyruvate and NADH to lactate and NAD+, to meet newly established ATP demands. The present study investigated purified LDH from the liver of dehydrated and control X. laevis. LDH from dehydrated liver showed a significantly higher K m for l-lactate (1.74 fold), NAD+ (2.41 fold), and pyruvate (1.78 fold) in comparison to LDH from the liver of control frogs. In the presence of physiological levels of urea found in dehydrated animals, the K m values obtained for dehydrated LDH all returned to control LDH K m values. Dot blot analysis showed post-translational modifications may be responsible for the kinetic modification as the dehydrated form of LDH showed more phosphorylated serine residues (1.54 fold), less methylated lysine residues (0.43 fold), and a higher level of ubiquitination (1.90 fold) in comparison to control LDH. The physiological consequence of dehydration-induced LDH modification appears to adjust LDH function in conjunction with urea levels in dehydrated frogs. When urea levels are high during dehydration, LDH retains its normal function. Yet, as urea levels drop during rehydration, LDH function is reduced, possibly shunting pyruvate to the TCA cycle

    Free-radical first responders: The characterization of CuZnSOD and MnSOD regulation during freezing of the freeze-tolerant North American wood frog, Rana sylvatica

    No full text
    Background: The North American wood frog, Rana sylvatica, is able to overcome subzero conditions through overwintering in a frozen state. Freezing imposes ischemic and oxidative stress on cells as a result of cessation of blood flow. Superoxide dismutases (SODs) catalyze the redox reaction involving the dismutation of superoxide (O2-•) to molecular oxygen and hydrogen peroxide.Methods: The present study investigated the regulation of CuZnSOD and MnSOD kinetics as well as the transcript, protein and phosphorylation levels of purified enzyme from the muscle of control and frozen R. sylvatica.Results: CuZnSOD from frozen muscle showed a significantly higher Vmax (1.52 fold) in comparison to CuZnSOD from the muscle of control frogs. MnSOD from frozen muscle showed a significantly lower Km for O2-• (0.66 fold) in comparison to CuZnSOD from control frogs. MnSOD from frozen frogs showed higher phosphorylation of serine (2.36 fold) and tyrosine (1.27 fold) residues in comparison to MnSOD from control animals. Susceptibility to digestion via thermolysin after incubation with increasing amount of urea (Cm) was tested, resulting in no significant changes for CuZnSOD, whereas a significant change in MnSOD stability was observed between control (2.53 M urea) and frozen (2.92 M urea) frogs. Expressions of CuZnSOD and MnSOD were quantified at both mRNA and protein levels in frog muscle, but were not significantly different.Conclusion: The physiological consequence of freeze-induced SOD modification appears to adjust SOD function in freezing frogs.General significance: Augmented SOD activity may increase the ability of R. sylvatica to overcome oxidative stress associated with ischemia

    Acute and subchronic effects on immune responses of carp (Cyprinus carpio L.) after exposure to deoxynivalenol (DON) in feed

    Get PDF
    The mycotoxin deoxynivalenol (DON) has beenshown to regularly occur at relevant concentrations in feed designedfor aquaculture use, but little is known about the consequencesof its presence on the organisms that consume theDON-contaminated feed. Previous studies indicated a downregulationof pro-inflammatory responses in carp (Cyprinuscarpio L.) after 4 weeks of feeding DON. The present studyexamined the time course of innate immune responses of carpto orally administered DON. Changes in mRNA levels ofimmune genes in different organs (head kidney, trunk kidney,spleen, liver, and intestine) were observed indicating immunemodulatingproperties of DON. The immune-modulatory effects during the acute phase of DON exposure were characterizedby the activation of both pro- and anti-inflammatorycytokines and enzymes in carp. The subchronic responses toDON were characterized by activation of arginases culminatingin increased arginase activity in head kidney leukocytesafter 26 days of DON treatment. These results suggest profoundeffects of this mycotoxin on fish in aquaculture

    Cytokine and Antioxidant Regulation in the Intestine of the Gray Mouse Lemur (Microcebus murinus) During Torpor

    Get PDF
    During food shortages, the gray mouse lemur (Microcebus murinus) of Madagascar experiences daily torpor thereby reducing energy expenditures. The present study aimed to understand the impacts of torpor on the immune system and antioxidant response in the gut of these animals. This interaction may be of critical importance given the trade-off between the energetically costly immune response and the need to defend against pathogen entry during hypometabolism. The protein levels of cytokines and antioxidants were measured in the small intestine (duodenum, jejunum, and ileum) and large intestine of aroused and torpid lemurs. While there was a significant decrease of some pro-inflammatory cytokines (IL-6 and TNF-α) in the duodenum and jejunum during torpor as compared to aroused animals, there was no change in anti-inflammatory cytokines. We observed decreased levels of cytokines (IL-12p70 and M-CSF), and several chemokines (MCP-1 and MIP-2) but an increase in MIP-1α in the jejunum of the torpid animals. In addition, we evaluated antioxidant response by examining the protein levels of antioxidant enzymes and total antioxidant capacity provided by metabolites such as glutathione (and others). Our results indicated that levels of antioxidant enzymes did not change between torpor and aroused states, although antioxidant capacity was significantly higher in the ileum during torpor. These data suggest a suppression of the immune response, likely as an energy conservation measure, and a limited role of antioxidant defenses in supporting torpor in lemur intestine
    corecore