15 research outputs found

    Novel TRIM32 mutation in sarcotubular myopathy

    Get PDF
    Tripartite motif-containing protein 32 (TRIM32) is a member of the TRIM ubiquitin E3 ligases which ubiquitinates different substrates in muscle including sarcomeric proteins. Mutations in TRIM32 are associated with Limb-Girdle Muscular Dystrophy 2H. In a 66 old woman with disto-proximal myopathy, we identified a novel homozygous mutation of TRIM32 gene c.1781G > A (p. Ser594Asn) localised in the c-terminus NHL domain. Mutations of this domain have been also associated to Sarcotubular Myopathy (STM), a form of distal myopathy with peculiar features in muscle biopsy, now considered in the spectrum of LGMD2H. Muscle biopsy revealed severe abnormalities of the myofibrillar network with core like areas, lobulated fibres, whorled fibres and multiple vacuoles. Desmin and Myotilin stainings also pointed to accumulation as in Myofibrillar Myopathy. This report further confirms that STM and LGMD2H represent the same disorder and suggests to consider TRIM32 mutations in the genetic diagnosis of Sarcotubular Myopathy and Myofibrillar Myopathy

    Distal motor neuropathy associated with novel EMILIN1 mutation

    Get PDF
    Abstract Elastin microfibril interface-located proteins (EMILINs) are extracellular matrix glycoproteins implicated in elastogenesis and cell proliferation. Recently, a missense mutation in the EMILIN1 gene has been associated with autosomal dominant connective tissue disorder and motor-sensory neuropathy in a single family. We identified by whole exome sequencing a novel heterozygous EMILIN1 mutation c.748C>T [p.R250C] located in the coiled coil forming region of the protein, in four affected members of an autosomal dominant family presenting a distal motor neuropathy phenotype. In affected patient a sensory nerve biopsy showed slight and unspecific changes in the number and morphology of myelinated fibers. Immunofluorescence study of a motor nerve within a muscle biopsy documented the presence of EMILIN-1 in nerve structures. Skin section and skin derived fibroblasts displayed a reduced extracellular deposition of EMILIN-1 protein with a disorganized network of poorly ramified fibers in comparison with controls. Downregulation of emilin1a in zebrafish displayed developmental delay, locomotion defects, and abnormal axonal arborization from spinal cord motor neurons. The phenotype was complemented by wild-type zebrafish emilin1a, and partially the human wild-type EMILIN1 cRNA, but not by the cRNA harboring the novel c.748C>T [p.R250C]. These data suggest a role of EMILIN-1 in the pathogenesis of diseases affecting the peripheral nervous system

    Clinical and molecular consequences of exon 78 deletion in DMD gene

    Get PDF
    We present a 13-year-old patient with persistent increase of serum Creatine Kinase (CK) and myalgia after exertion. Skeletal muscle biopsy showed marked reduction of dystrophin expression leading to genetic analysis of DMD gene by MLPA, which detected a single deletion of exon 78. To the best of our knowledge, DMD exon 78 deletion has never been described in literature and, according to prediction, it should lead to loss of reading frame in the dystrophin gene. To further assess the actual effect of exon 78 deletion, we analysed cDNA from muscle mRNA. This analysis confirmed the absence of 32 bp of exon 78. Exclusion of exon 78 changes the open reading frame of exon 79 and generate a downstream stop codon, producing a dystrophin protein of 3703 amino acids instead of 3685 amino acids. Albeit loss of reading frame usually leads to protein degradation and severe phenotype, in this case, we demonstrated that deletion of DMD exon 78 can be associated with a functional protein able to bind DGC complex and a very mild phenotype. This study adds a novel deletion in DMD gene in human and helps to define the compliance between maintaining/disrupting the reading frame and clinical form of the disease

    The SPTLC1 p.S331 mutation bridges sensory neuropathy and motor neuron disease and has implications for treatment

    Get PDF
    Aims SPTLC1-related disorder is a late onset sensory-autonomic neuropathy associated with perturbed sphingolipid homeostasis which can be improved by supplementation with the serine palmitoyl-CoA transferase (SPT) substrate, l-serine. Recently, a juvenile form of motor neuron disease has been linked to SPTLC1 variants. Variants affecting the p.S331 residue of SPTLC1 cause a distinct phenotype, whose pathogenic basis has not been established. This study aims to define the neuropathological and biochemical consequences of the SPTLC1 p.S331 variant, and test response to l-serine in this specific genotype. Methods We report clinical and neurophysiological characterisation of two unrelated children carrying distinct p.S331 SPTLC1 variants. The neuropathology was investigated by analysis of sural nerve and skin innervation. To clarify the biochemical consequences of the p.S331 variant, we performed sphingolipidomic profiling of serum and skin fibroblasts. We also tested the effect of l-serine supplementation in skin fibroblasts of patients with p.S331 mutations. Results In both patients, we recognised an early onset phenotype with prevalent progressive motor neuron disease. Neuropathology showed severe damage to the sensory and autonomic systems. Sphingolipidomic analysis showed the coexistence of neurotoxic deoxy-sphingolipids with an excess of canonical products of the SPT enzyme. l-serine supplementation in patient fibroblasts reduced production of toxic 1-deoxysphingolipids but further increased the overproduction of sphingolipids. Conclusions Our findings suggest that p.S331 SPTLC1 variants lead to an overlap phenotype combining features of sensory and motor neuropathies, thus proposing a continuum in the spectrum of SPTLC1-related disorders. l-serine supplementation in these patients may be detrimental

    Skeletal muscle involvement in biallelic SORD mutations: case report and review of the literature

    Get PDF
    Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have been identified as a genetic cause of autosomal recessive axonal Charcot-Marie-Tooth disease 2 (CMT2) and distal hereditary motor neuropathy (dHMN). We herein review the main phenotypes associated with SORD mutations and report the case of a 16-year-old man who was referred to our outpatient clinic for a slowly worsening gait disorder with wasting and weakness of distal lower limbs musculature. Since creatine phosphokinase (CPK) values were persistently raised (1.5fold increased) and a Next-Generation Sequencing CMT-associated panel failed in identifying pathogenic variants, a muscle biopsy was performed with evidence of alterations suggestive of a protein surplus distal myopathy. Finally, Whole-Exome Sequencing (WES) identified two pathogenic SORD variants in the heterozygous state: c.458C > A (p.Ala153Asp) and c.757delG (p.Ala253Glnfs*27). This is an isolated report of compound heterozygosity for two SORD mutations associated with clinical and histological signs of skeletal muscle involvement, expanding the phenotypic expression of SORD mutations

    HATEMETER: Hate speech tool for monitoring, analysing and tackling Anti-Muslim hatred online. eCrime

    No full text
    This report presents the results of project “Hatemeter - Hate speech tool for monitoring, analysing and tackling anti-Muslim hatred online” (hereinafter also referred to as “Hatemeter”, project reference: 764583). The project has been coordinated by the University of Trento (Italy) and especially by eCrime, the research group on ICT, law and criminology of the Department ‘Fac¬ulty of Law’, with the cooperation of the Department of Sociology and Social Research, in partnership with Fondazione Bruno Kessler (Italy), University Toulouse 1 Capitole (France), Teesside University (United King¬dom), Amnesty International – Sezione Italiana (Italy), StophHate UK (United Kingdom), and Collectif Contre l’Islamophobie en France (France). The project was funded by the European Commission - Directorate-Gen¬eral Justice and Consumers under the Rights, Equality and Citizenship Programme (2014-2020) and lasted 24 months: from February 2018 to January 2020

    The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy

    No full text
    Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Pias\u3b3) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients
    corecore