124 research outputs found

    Improving water quality does not guarantee fish health: Effects of ammonia pollution on the behaviour of wild-caught pre-exposed fish.

    Get PDF
    Ammonia is a pollutant frequently found in aquatic ecosystems. In fish, ammonia can cause physical damage, alter its behaviour, and even cause death. Exposure to ammonia also increases fish physiological stress, which can be measured through biomarkers. In this study, we analysed the effect of sublethal ammonia concentrations on the behaviour and the oxidative stress of Barbus meridionalis that had been pre-exposed to this compound in the wild. Wild-caught fish from a polluted site (pre-exposed fish) and from an unpolluted site (non-pre-exposed fish) were exposed, under experimental conditions, to total ammonia concentrations (TAN) of 0, 1, 5, and 8 mg/L. Swimming activity, feeding behaviour, and oxidative stress response based on biomarkers were analysed. Pre-exposed fish showed both an altered behaviour and an altered oxidative stress response in the control treatment (0 mg/L). Differences in swimming activity were also found as pre-exposed fish swam less. Lower feeding activity (voracity and satiety) and altered response to oxidative stress were also observed at 1 mg/L TAN. Biomarker results confirmed pre-exposed fish suffer from a reduction in their antioxidant defences and, hence, showed increased oxidative tissue damage. In summary, pre-exposed fish showed more sensitivity to ammonia exposure than fish from a pristine site

    Decontamination of polycyclic aromatic hydrocarbons and nonylphenol from sewage sludge using hydroxypropyl-β-cyclodextrin and evaluation of the toxicity of leachates

    Get PDF
    11 páginas.-- 2 tablas.-- 3 figuras.-- 61 referenciasA decontamination technique based in cyclodextrin extraction has been developed to eliminate nonylphenol (NP) and 16 polycyclic aromatic hydrocarbons (PAHs; the US Environmental Protection Agency priority pollutants list) from sewage sludge. In a first step, PAHs and NP were characterised in six sludges to determine contamination levels according to limit values proposed by the European Union Sludge Directive draft. There were few variations in the total PAHs content with levels of 1.88 to 3.05 mg kg-1. Three-ring PAHs predominated, but fluoranthene and pyrene were also present. None of the sludge exceeded the PAHs limit proposed by the European Union's draft Directive. On the contrary, NP content in four of the six sludges was over the recommended limits of 50 mg kg-1 for NP ethoxylates. With the aim of obtaining NP values below the concentration limits proposed to use the sewage sludge as agricultural amendments, a preliminary study using hydroxypropyl-β-cyclodextrin (HPBCD) extractions as a decontamination technique was carried out. About 90 % of NP content was removed with only one extraction with HPBCD, whereas after three sequential extractions using an aqueous solution without HPBCD, the NP extraction percentage was less than 1 %. Simultaneously, PAHs extraction percentages obtained with HPBCD were also much higher than when aqueous solution was used, especially in the case of two- and three-ring PAHs. Finally, the potential environmental hazard of HPBCD leachates to aquatic organisms (Daphnia magna) was tested. These results indicate that the treatment of sewage sludge with cyclodextrin could allow their safe use as fertiliser in agriculture. © 2013 Springer-Verlag Berlin Heidelberg.Support from projects CTM2006-04626 and CTM2009-07335, Spanish Ministry of Science and Innovation (cofunded by Fondo Europeo de Desarrollo Regional, FEDER), are greatly appreciated. M.A. Sánchez-Trujillo acknowledges a research contract from Consejo Superior de Investigaciones Científicas (CSIC, JAEPre 0800763) cofinanced by Fondo Social Europeo (FSE).Peer Reviewe

    Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs

    Get PDF
    © 2019. ElsevierOne of the major challenges that faces today regulatory risk assessment is to speed up the way of assessing threshold sublethal detrimental effects of existing and new chemical products. Recently advances in imaging allows to monitor in real time the behaviour of individuals under a given stress. Light is a common stress for many different organisms. Fish larvae and many invertebrate species respond to light altering their behaviour. The water flea Daphnia magna as many other zooplanktonic species has a marked diel vertical phototactic swimming behaviour against light due to fish predation. The aim of this study was to develop a high throughput image analysis to study changes in the vertical swimming behaviour to light of D. magna first reproductive adult females exposed to 0.1 and 1 µg/L of four psychiatric drugs: diazepam, fluoxetine, propranolol and carbamazepine during their entire life. Experiments were conducted using a new custom designed vertical oriented four 50 mL chamber device controlled by the Noldus software (Netherlands). Changes in speed, preferred area (bottom vs upper areas) and animal aggregation were analysed using groups of animals under consecutive periods of dark and apical light stimulus of different intensities. Obtained results indicated that light intensity increased the speed but low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals move less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine were the compounds effecting most the behaviour. Our results indicated that psychiatric drugs at environmental relevant concentrations alter the vertical phototactic behaviour of D. magna individuals and that it is possible to develop appropriate high-throughput image analysis devices to measure those responses.Peer ReviewedPostprint (author's final draft

    Nano-TiO2 phototoxicity in fresh and seawater: Daphnia magna and Artemia sp. as proxies

    Get PDF
    Nowadays, the industry is quite commonly using nanoparticles of titanium dioxide (nTiO2)especially in sunscreens, due to its higher reflective index in comparison to micron size TiO2. It shigh demand causes its widespread environmental occurrence, thus damaging the environment.The aquatic ecosystems are the most vulnerable to contamination by nTiO2. Like other engineered nanoparticles, nTiO2has demonstrated generation of reactive oxygen species (ROS) and reactive halogen species (RHS) in the aquatic environment under UV radiation. This study investigated the toxicity of nTiO2towards two aquatic indicator organisms, one from freshwater (Daphnia magna) andthe other from seawater (Artemiasp.), under simulated solar radiation (SSR).Daphnia magna and Artemiasp. were co-exposed in 16 h SSR and 8 h darkness cycles to different concentrations of nTiO2.The estimated EC50 at 48 h forD. magna was 3.16 mg nTiO2/L, whereas for A. sp. no toxic effectswere observed. When we exposed these two organisms simultaneously to 48 h of prolonged SSRusing higher nTiO2 concentrations, EC50 values of 7.60 mg/L and 5.59 mg/L nTiO2forD. magna and A. sp., respectively, were obtained. A complementary bioassay was carried out withA. sp., byexposing this organism to a mixture of nTiO2and organic UV filters (benzophenone 3 (oxybenzone,BP3), octocrylene (OC), and ethyl 4-aminobenzoate (EtPABA)), and then exposed to SSR. The results suggested that nTiO2could potentially have negative impacts on these organisms, also this workoutlines the different characteristics and interactions that may contribute to the mechanisms of environmental (in salted and freshwater) phototoxicity of nTiO2and UV radiation, besides their interaction with organic compounds

    Endocrine disruption in the omics era: New views, new hazards, new approaches

    Get PDF
    The genome revolution has brought about a complete change on our view of biological systems. The quantitative determination of changes in all the major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences, including toxicology. Endocrine disruption, i.e., the capacity of anthropogenic pollutants to alter the hormonal balance of the organisms, is one of the fields of Ecotoxicology in which omics has a relevant role. In the first place, the discovery of scores of potential targets in the genome of almost any Metazoan species studied so far, each of them being a putative candidate for interaction with endocrine disruptors. In addition, the understanding that ligands, receptors, and their physiological functions suffered fundamental variations during animal evolution makes it necessary to assess disruption effects separately for each major taxon. Fortunately, the same deal of knowledge on genes and genomes powered the development of new high-throughput techniques and holistic approaches. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of endocrine disruption assessment both for wildlife and humans

    Les cèl·lules

    No full text
    Charla para la Escola Sant Sadurní de Montornés del Vallé

    A genomic and ecotoxicological perspective of DNA array studies in aquatic environmental risk assessment

    No full text
    Ecotoxicogenomics is developing into a key tool for the assessment of environmental impacts and environmental risk assessment for aquatic ecosystems. This review aims to report achievements and drawbacks of this technique and to explore potential conceptual and experimental procedures to improve future investigations. Ecotoxicogenomic literature evidences the ability of genomic technologies to characterize toxicant specific gene transcriptome patterns that can be used to identify major toxicants affecting aquatic species. They also contribute decisively to the development of new molecular biomarkers and, in many cases, to the determination of new possible gene targets. Primary transcriptomic responses obtained after short exposures provided more information of putative gene targets than secondary responses obtained after long, chronic exposures, which in turn are usually more accurate to describe actual environmental impacts in natural populations. Several problems need to be addressed in future investigations: the lack of studies (and genomic information) on key ecological species and taxa, the need to better understand the different transcriptomic responses to high and low doses and, especially, short and long exposures, and the need to improve experimental designs to minimize false transcriptome interpretations of target genes. © 2011 Elsevier B.V.This work has been supported by the Spanish Ministry of Science and Innovation through the project AQUATOXIGEN (CGL2008-01898).Peer Reviewe

    Untargeted metabolomics changes on Gammarus pulex induced by propranolol, triclosan, and nimesulide pharmaceutical drugs

    No full text
    The presence of pharmaceuticals and personal care products (PPCPs) in natural water resources due to incomplete removal in Wastewater Treatment Plants (WWTPs) is a serious environmental concern at present. In this work, the effects of three pharmaceuticals (propranolol, triclosan, and nimesulide) on Gammarus pulex metabolic profiles at different doses and times of exposure have been investigated by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). The complex data sets generated in the different exposure experiments were analyzed with the ROIMCR procedure, based on the selection of the MS regions of interest (ROI) data and on their analysis by the Multivariate Curve-Resolution Alternating Least Squares (MCR-ALS) chemometrics method. This approach, allowed the resolution and identification of the metabolites present in the analyzed samples, as well as the estimation of their concentration changes due to the exposure experiments. ANOVA Simultaneous Component Analysis (ASCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were then conducted to assess the changes in the concentration of the metabolites for the three pharmaceuticals at the different conditions of exposure. The three tested pharmaceuticals changed the concentrations of metabolites, which were related to different KEGG functional classes. These changes summarize the biochemical response of Gammarus pulex to the exposure by the three investigated pharmaceuticals. Possible pathway alterations related to protein synthesis and oxidative stress were observed in the concentration of identified metabolites.The research leading to these results has received funding from Spanish Ministerio de Ciencia e Innovación, Spain (PID2019-105732GB-C21) and Generalitat de Catalunya, Spain (project 2017-SGR-753). This work was partly supported by funding from the Biotechnology and Biological Sciences Research Council (project reference: BB/P005187/1). Funding bodies played no role in the design of the study or decision to publish. Dr. Thomas H. Miller is acknowledged for help in the sampling of Gammarus pulex from the River Cray, UK

    Characterization of neurotransmitters and related metabolites in Daphnia magna juveniles deficient in serotonin and exposed to neuroactive chemicals that affect its behavior: A targeted LC-MS/MS method

    No full text
    Neurotransmitters are endogenous metabolites that play a crucial role within an organism, at the chemical synapses. There is a growing interest in their analytical determination for understanding the neurotoxic effect of contaminants. Daphnia magna represents an excellent aquatic model for these environmental studies, due to its similarities with vertebrates in several neurotransmitters and related gene pathways and because of its wide application in ecotoxicological studies. Within this study, an accurate and sensible method of analysis of 17 neurotransmitters and related precursors and metabolites was developed. The method was validated in terms of sensitivity, reproducibility, precision, and accuracy, and also matrix effect was evaluated. As an independent probe of method validation and applicability, the method was applied to two different scenarios. First, it was used for the study of neurotransmitter levels in genetically mutated tryptophan hydrolase D. magna clones, confirming the absence of serotonin and its metabolite 5-HIAA. Additionally, the method was applied for determining the effects of chemical compounds known to affect different neurotransmitter systems and to alter Daphnia behavior. Significant changes were observed in 13 of the analyzed neurotransmitters across treatments, which were related to the neurotransmitter systems described as being affected by these neurochemicals. These two studies, which provide results on the ways in which the neurotransmitter systems in D. magna are affected, have corroborated the applicability of the presented method, of great importance due to the suitability of this organism for environmental neurotoxicity studies.This work was funded by the Spanish Ministry of Science and Innovation project (CTM2017-83242-R). Inmaculada Fuertes thanks the Spanish Ministry of economy and competitiveness for her doctoral fellowship (FPI-MICINN BES-2015-075023).Peer reviewe

    Low environmental levels of fluoxetine induce spawning and changes in endogenous estradiol levels in the zebra mussel Dreissena polymorpha

    Get PDF
    28 p., 3 figures and references.The pharmaceutical fluoxetine, a selective serotonin reuptake inhibitor (SSRI), is often detected in municipal wastewater treatment plant effluents and surface waters within the ng/l range. There is, however, insufficient research evaluating potential hazards of fluoxetine in aquatic organisms at environmentally relevant concentrations. Taking into account that several SSRIs (fluoxetine, fluvoxamine) act as spawning inducers in bivalves, this study aimed at investigating the effects of fluoxetine exposure in the zebra mussel (Dreissena polymorpha) by assessing its potential to induce spawning at environmentally relevant concentrations (20 and 200. ng/l), as well as alterations of endogenous levels of testosterone and estradiol. Histological analyses of female and male gonads showed a concentration dependent decrease of oocyte and spermatozoan density, with a reduction in the number of oocytes per follicle of 40-70%, and spermatozoan density of 21-25%, relative to controls, following exposure to 20 and 200. ng/l of fluoxetine for 6 days, respectively. There was also a significant increase (1.5-fold) in the endogenous level of esterified estradiol in organisms exposed to 200. ng/l fluoxetine. Overall, the study shows that exposure to low levels of fluoxetine may effectively induce gamete liberation in the zebra mussel as well as alter endogenous levels of estradiol, and evidences the need of further investigating the potential of fluoxetine to alter the endocrine system of molluscs at environmentally relevant concentrations.This study was funded by the Ministerio de Medio Ambiente, Medio Rural y Marinom projects 041/SGTB/2007/1.1 and 042/RN08/03.4, the Spanish Ministry of Science and Education under Project Ref. CGL2008-01888/BOS, and a CSIC project (200930I037).Peer reviewe
    • …
    corecore