86 research outputs found

    ПТИЦЫ ВОСТОЧНОГО САЯНА / Birds of the Eastern Sayan

    Get PDF
    The monograph presents data on the distribution and ecology of 340 species of birds found on the territory of the poorly studied highland — the Eastern Sayan. An ecological systematic and faunogenetic analysis of the region’s avifauna has been carried out. We reveal some features of the birds\u27 way of life in the extreme natural conditions of the mountains of Southern Siberia. The book is intended for all who are of interest in the wildlife of Siberia, as well as for biology teachers and students, ecologists. В монографии приведены данные о распространении и экологии 340 видов птиц, отмеченных на территории малоизученной горной страны — Восточного Саяна. Проведен эколого-систематический и фауногенетический анализ орнитофауны региона. Выявлены некоторые особенности образа жизни птиц в экстремальных природных условиях гор Южной Сибири. Книга адресована всем интересующимся животным миром Сибири, а также преподавателям и студентам-биологам, экологам и учителям биологии.https://digitalcommons.unl.edu/zeabook/1080/thumbnail.jp

    The Mu2e Crystal Calorimeter: An Overview

    Get PDF
    The Mu2e experiment at Fermilab will search for the standard model-forbidden, charged lepton flavour-violating conversion of a negative muon into an electron in the field of an aluminium nucleus. The distinctive signal signature is represented by a mono-energetic electron with an energy near the muon's rest mass. The experiment aims to improve the current single-event sensitivity by four orders of magnitude by means of a high-intensity pulsed muon beam and a high-precision tracking system. The electromagnetic calorimeter complements the tracker by providing high rejection power in muon to electron identification and a seed for track reconstruction while working in vacuum in presence of a 1 T axial magnetic field and in a harsh radiation environment. For 100 MeV electrons, the calorimeter should achieve: (a) a time resolution better than 0.5 ns, (b) an energy resolution <10%, and (c) a position resolution of 1 cm. The calorimeter design consists of two disks, each loaded with 674 undoped CsI crystals read out by two large-area arrays of UV-extended SiPMs and custom analogue and digital electronics. We describe here the status of construction for all calorimeter components and the performance measurements conducted on the large-sized prototype with electron beams and minimum ionizing particles at a cosmic ray test stand. A discussion of the calorimeter's engineering aspects and the on-going assembly is also reported

    Mu2e Crystal Calorimeter Readout Electronics: Design and Characterisation

    Get PDF
    The Mu2e experiment at Fermi National Accelerator Laboratory will search for the charged-lepton flavour-violating neutrinoless conversion of negative muons into electrons in the Coulomb field of an Al nucleus. The conversion electron with a monoenergetic 104.967 MeV signature will be identified by a complementary measurement carried out by a high-resolution tracker and an electromagnetic calorimeter, improving by four orders of magnitude the current single-event sensitivity. The calorimeter—composed of 1348 pure CsI crystals arranged in two annular disks—has a high granularity, 10% energy resolution and 500 ps timing resolution for 100 MeV electrons. The readout, based on large-area UV-extended SiPMs, features a fully custom readout chain, from the analogue front-end electronics to the digitisation boards. The readout electronics design was validated for operation in vacuum and under magnetic fields. An extensive radiation hardness certification campaign certified the FEE design for doses up to 100 krad and 1012 n1MeVeq/cm2 and for single-event effects. A final vertical slice test on the final readout chain was carried out with cosmic rays on a large-scale calorimeter prototype

    Positioning Europe for the EPITRANSCRIPTOMICS challenge

    Get PDF
    The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.SCOPUS: no.jinfo:eu-repo/semantics/publishe
    corecore