35 research outputs found

    A Typical Case Presentation with Spontaneous Visual Recovery in Patient Diagnosed with Leber Hereditary Optic Neuropathy Due to Rare Point Mutation in MT-ND4 Gene (m.11253T>C) and Literature Review

    Get PDF
    Leber hereditary optic neuropathy (LHON) is one of the most common inherited mitochondrial optic neuropathies, caused by mitochondrial DNA (mtDNA) mutations. Three most common mutations, namely m.11778G>A, m.14484T>G and m.3460G>A, account for the majority of LHON cases. These mutations lead to mitochondrial respiratory chain complex I damage. Typically, LHON presents at the 15–35 years of age with male predominance. LHON is associated with severe, subacute, painless bilateral vision loss and account for one of the most common causes of legal blindness in young individuals. Spontaneous visual acuity recovery is rare and has been reported in patients harbouring m.14484T>C mutation. Up to date LHON treatment is limited. Idebenone has been approved by European Medicines Agency (EMA) to treat LHON. However better understanding of disease mechanisms and ongoing treatment trials are promising and brings hope for patients. In this article we report on a patient diagnosed with LHON harbouring rare m.11253T>C mutation in MT-ND4 gene, who experienced spontaneous visual recovery. In addition, we summarise clinical presentation, diagnostic features, and treatment

    Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design

    Get PDF
    The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure–thermodynamics and structure–kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure–energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure–thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design

    Effect of chitosan essential oil films on the storage-keeping quality of pork meat products

    Full text link
    Edible films based on chitosan were prepared, with and without basil or thyme essential oils, with the aim of assessing their protective ability against lipid oxidation and their antimicrobial activity. Chitosan films had good oxygenbarrier properties, which were worsened by essential oil addition, especially when the film equilibrium moisture content increased. Due to the oxygen-barrier effect, all the films effectively protected pork fat from oxidation, in comparison to unprotected samples. In spite of the worsening of the oxygen-barrier properties, the films with essential oils were more effective than those of pure chitosan, which points to the chemical action of specific antioxidant compounds of the oils. Films were effective to control microbial growth in minced pork meat, although the incorporation of essential oils did not improve their antimicrobial activity. Throughout the storage, the films led to colour changes in minced pork meat associated with the conversion of myoglobin into metmyoglobin due to the reduction of the oxygen availability.The authors acknowledge the financial support provided by the Universitat Politecnica de Valencia (PAID-06-09-2834), Generalitat Valenciana (GV/2010/082) and Ministerio de Educacion y Ciencia (AGL2010-20694). Author J. Bonilla is deeply grateful to Generalitat Valenciana for a Santiago Grisolia Grant.Bonilla Lagos, MJ.; Vargas, M.; Atarés Huerta, LM.; Chiralt Boix, MA. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food and Bioprocess Technology. 7(8):2443-2450. https://doi.org/10.1007/s11947-014-1329-3S2443245078ASTM D3985. (1995). Standard test method for oxygen gas transmission rate through plastic films and sheeting using a coulometric sensor. West Conshohocken: American Society for Testing and Materials.Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104, 649–656.Aureli, P., Costantini, A., & Zolea, S. (1992). Antimicrobial activity of some plant essential oils against Listeria monocytogenes. Journal of Food Protection, 55, 344–348.Baranauskiene, R., Venskutoni, S. P. R., Viskelis, P., & Dambrauskiene, E. (2003). Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). Journal of Agricultural and Food Chemistry, 51, 7751–7758.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012a). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. Journal of Food Engineering, 110, 208–213.Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012b). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26, 9–16.Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94, 223–253.Burt, S. A., & Reinders, R. D. (2003). Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology, 36, 162–167.Caner, C., Vergano, P. J., & Wiles, J. L. (1998). Chitosan film mechanical and permeation properties as affected by acid, plasticizer and storage. Journal of Food Science, 63, 1049–1053.Casariego, A., Souza, B. W. S., Cerqueira, M. A., Teixeira, J. A., Cruz, L., Díaz, R., et al. (2009). Chitosan/clay ‘films properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocolloids, 23, 1895–1902.Devlieghere, F., Vermeiren, L., & Debevere, J. (2004). New preservation technologies: possibilities and limitations. International Dairy Journal, 14, 273–285.Di Pasqua, R., Hoskins, N., Betts, G., & Mauriello, G. (2006). Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde and eugenol in the growing media. Journal of Agricultural and Food Chemistry, 54, 2745–2749.Di Pierro, P., Sorrentino, A., Mariniello, L., Giosafatto, C. V. L., & Porta, R. (2011). Chitosan/whey protein film as active coating to extend Ricotta cheese shelf-life. LWT--Food Science and Technology, 44, 2324–2327.Fabra, M. J., Talens, P., Gavara, R., & Chiralt, A. (2012). Barrier properties of sodium caseinate films as affected by lipid composition and moisture content. Journal of Food Engineering, 109(3), 372–379.Gaysinsky, S., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Growth inhibition of E. Coli O157:H7 and Listeria monocytogenes by carvacrol and eugenol encapsulated in surfactant micelles. Journal of Food Protection, 68, 2559–2566.Govaris, A., Botsoglou, E., Sergelidis, D., & Chatzopoulou, P. D. (2011). Antibacterial activity of oregano and thyme essential oils against Listeria monocytogenes and Escherichia coli O157:H7 in feta cheese packaged under modified atmosphere. LWT - Food Science and Technology, 44, 1240–1244.Han, J. H., & Gennadios, A. (2005). Edible films and coatings: a review. In J. H. Han (Ed.), Innovations in Food Packaging (pp. 39–262). Oxford: Elsevier Academic.Kim, J., Marshall, M. R., & Wei, C. I. (1995). Antibacterial activity of some essential oil components against five foodborne pathogens. Journal of Agricultural and Food Chemistry, 43, 2839–2845.Labuza, T. P. (1980). The effect of water activity on reaction kinetics of food deterioration. Food Technology, 34, 36–41.Mancini, R. A., & Hunt, M. C. (2005). Current research in meat color. Meat Science, 71, 100–121.Moure, A., Cruz, J. M., Franco, D., Dominguez, J. M., Sineiro, J., Dominguez, H., et al. (2001). Natural antioxidants from residual sources. Food Chemistry, 72, 145–171.Rao, M. S., Chander, R., & Sharma, A. (2005). Development of shelf-stable intermediate moisture meat products using active edible chitosan coating and irradiation. Journal of Food Science, 70, 325–331.Salame, M. (1986). Barrier polymers. In M. Bakker (Ed.), The Wiley encyclopedia of packaging technology (pp. 48–54). New York: Wiley.Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98, 443–452.Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., & Cháfer, M. (2011a). Use of essential oils in bioactive edible coatings. Food Engineering Reviews, 3, 1–16.Sánchez-González, L., Cháfer, M., Hernández, M., Chiralt, A., & González-Martínez, C. (2011b). Antimicrobial activity of polysaccharide films containing essential oils. Food Control, 22, 1302–1310.Seydim, A. C., & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39, 639–644.Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53, 7749–7759.Singh, B., Falahee, M. B., & Adams, M. R. (2001). Synergistic inhibition of Listeria monocytogenes by nisin and garlic extract. Food Microbioliology, 18, 133–139.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41, 164–171.Vargas, M., Albors, A., Chiralt, A., & González-Martínez, C. (2009). Characterization of chitosan–oleic acid composite films. Food Hydrocolloids, 23, 536–547.Vargas, M., Albors, A., & Chiralt, A. (2011). Application of chitosan-sunflower oil edible films to pork meat hamburgers. Procedia Food Science, 1, 39–43.Wan, J., Wilcock, A., & Coventry, M. J. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. Journal of Applied Microbiology, 84, 152–158.Zivanovic, S., Chi, S., & Draughon, F. (2005). Antimicrobial activity of chitosan films enriched with essential oils. Journal of Food Science, 70, 45–51

    Design of [(2-pyrimidinylthio)acetyl]benzenesulfonamides as inhibitors of human carbonic anhydrases.

    No full text
    A series of [(2-pyrimidinylthio)acetyl]benzenesulfonamides were designed and synthesized. Their binding affinities as inhibitors of several recombinant human carbonic anhydrase (CA) isozymes were determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). A group of compounds containing a chlorine atom in the benzenesulfonamide ring were found to exhibit higher selectivity but lower binding affinity toward tested CAs. The crystal structures of selected compounds in complex with CA II were determined to atomic resolution. Docking studies were performed to compare the binding modes of experimentally determined crystallographic structures with computational prediction of the pyrimidine derivative binding to CA II. Several compounds bound to select CAs with single-digit nanomolar affinities and could be used as leads for inhibitor development toward a select CA isozyme

    Synthesis of aminocyanopyrazoles via a multi-component reaction and anti-carbonic anhydrase inhibitory activity of their sulfamide derivatives against cytosolic and transmembrane isoforms

    No full text
    A convenient protocol for the multicomponent reaction (MCRs) between malononitrile with an orthoester and hydrazine derivatives, under acid catalyst is described. A series of aminocyanopyrazoles 4 was prepared, isolated and characterized. These pyrazoles reacted with sodium nitrite followed by secondary amine reagent and with formic acid to lead pyrazolotriazines 6 and pyrazolopyrimidinones 7. Some of the aminopyrazoles were converted to the corresponding sulfamides by reaction with sulfamoyl chloride. The aminopyrazoles incorporating phenyl and tosyl moieties were tested as inhibitors of four carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. Many of them showed low micromolar or submicromolar inhibition of these enzymes. The corresponding sulfamides were low nanomolar CA inhibitors
    corecore