500 research outputs found
The intriguing case of motor neuron disease: ALS and SMA come closer
MNDs (motor neuron diseases) form a heterogeneous group of pathologies characterized by the progressive degeneration of motor neurons. More and more genetic factors associated with MND encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of MND. In the present paper we review recent developments showing a functional link between SMN (survival of motor neuron), the causative factor of SMA (spinal muscular atrophy), and FUS (fused in sarcoma), a genetic factor in ALS (amyotrophic lateral sclerosis). SMN is long known to have a crucial role in the biogenesis and localization of the spliceosomal snRNPs (small nuclear ribonucleoproteins), which are essential assembly modules of the splicing machinery. Now we know that FUS interacts with SMN and pathogenic FUS mutations have a significant effect on snRNP localization. Together with other recently published evidence, this finding potentially links ALS pathogenesis to disturbances in the splicing machinery, and implies that pre-mRNA splicing may be the common weak point in MND, although other steps in mRNA metabolism could also play a role. Certainly, further comparison of the RNA metabolism in different MND will greatly help our understanding of the molecular causes of these devastating diseases
Uncommon Blepharitis
Blepharitis is a common chronic inflammatory condition affecting the eyelid margins; the pathophysiology of blepharitis is complex and not fully understood. The disease is anatomically divided into anterior (inflammation of eyelashes) and posterior (meibomian gland dysfunction) types. Diagnosis relies on clinical examination, revealing characteristic features like scurf, vascular changes, and meibomian gland dysfunction. The main goals of blepharitis treatment are symptom relief, recurrence prevention, and complication risk minimization. Treatment options include lid hygiene, topical and systemic antibiotics, topical corticosteroids, and omega-3 supplements. However, it is important to highlight reported cases of blepharitis as side effects of systemic therapies, particularly in the context of chemotherapy, bortezomib, cetuximab, TNFα inhibitors, and dupilumab. It is crucial to monitor patients undergoing such treatments regularly and attentively in order to promptly set up adequate supportive therapy. Of even more importance is future research on the pathophysiological mechanisms responsible for the occurrence of these ocular side effects in order to find a nosological cure for the issue
Preventing and Managing Iatrogenic Dry Eye Disease during the Entire Surgical Pathway: A Study Focusing on Patients Undergoing Cataract Surgery
Patient expectations for cataract surgery are continuously increasing, and dry eye disease (DED) represents a major cause of patient dissatisfaction in eye surgery. The present opinion paper aims to provide useful insights to improve the entire pathway of a patient undergoing cataract surgery, from the preoperative setting to the postoperative one. The available evidence from main clinical trials published on this topic is presented in association with experience-based points of view by the authors. Ocular surface disease (OSD) is common in patients presenting for cataract surgery, and more than half of these patients have DED and meibomian gland dysfunction (MGD), even in the absence of symptoms. Therefore, there is a need to encourage preoperative assessments for the risk of DED development or worsening in all patients as a routine approach to cataract surgery. New all-in-one diagnostic machines allow for fast and noninvasive screening of the ocular surface status. Once a preoperative diagnosis of DED/OSD is reached, ocular surface optimization should be obtained before surgery. In the case of unresolved OSD, the decision to delay surgery should be considered. The surgical procedure can be optimized by avoiding large incisions, limiting microscope light intensity and exposure, and avoiding an aspirating speculum or preserved eye drops. Postoperatively, the continued avoidance of preserved agents is advisable, as well as a limited exposure to epitheliotoxic antibiotics and nonsteroidal anti-inflammatory drugs. Short-term, preservative-free, soft corticosteroids may be useful for patients with extensive or persistent inflammation
Real-time neural signals decoding onto off-the-shelf DSP processors for neuroprosthetic applications.
The control of upper limb neuroprostheses through the peripheral nervous system (PNS) can allow restoring motor functions in amputees. At present, the important aspect of the real-time implementation of neural decoding algorithms on embedded systems has been often overlooked, notwithstanding the impact that limited hardware resources have on the efficiency/effectiveness of any given algorithm. Present study is addressing the optimization of a template matching based algorithm for PNS signals decoding that is a milestone for its real-time, full implementation onto a floating-point Digital Signal Processor (DSP). The proposed optimized real-time algorithm achieves up to 96% of correct classification on real PNS signals acquired through LIFE electrodes on animals, and can correctly sort spikes of a synthetic cortical dataset with sufficiently uncorrelated spike morphologies (93% average correct classification) comparably to the results obtained with top spike sorter (94% on average on the same dataset). The power consumption enables more than 24 hours processing at the maximum load, and latency model has been derived to enable a fair performance assessment. The final embodiment demonstrates the real-time performance onto a low-power off-the-shelf DSP, opening to experiments exploiting the efferent signals to control a motor neuroprosthesis
One Soul and Several Faces of Evaporative Dry Eye Disease
The ocular surface system interacts with, reacts with, and adapts to the daily continuous insults, trauma, and stimuli caused by direct exposure to the atmosphere and environment. Several tissue and para-inflammatory mechanisms interact to guarantee such an ultimate function, hence maintaining its healthy homeostatic equilibrium. Evaporation seriously affects the homeostasis of the system, thereby becoming a critical trigger in the pathogenesis of the vicious cycle of dry eye disease (DED). Tear film lipid composition, distribution, spreading, and efficiency are crucial factors in controlling water evaporation, and are involved in the onset of the hyperosmolar and inflammatory cascades of DED. The structure of tear film lipids, and subsequently the tear film, have a considerable impact on tears’ properties and main functions, leading to a peculiar clinical picture and specific management
Exploring Response to Immunotherapy in Non-Small Cell Lung Cancer Using Delta-Radiomics
Delta-radiomics is a branch of radiomics in which features are confronted after time or after introducing an external factor (such as treatment with chemotherapy or radiotherapy) to extrapolate prognostic data or to monitor a certain condition. Immune checkpoint inhibitors (ICIs) are currently revolutionizing the treatment of non-small cell lung cancer (NSCLC); however, there are still many issues in defining the response to therapy. Contrast-enhanced CT scans of 33 NSCLC patients treated with ICIs were analyzed; altogether, 43 lung lesions were considered. The radiomic features of the lung lesions were extracted from CT scans at baseline and at first reassessment, and their variation (delta, 06) was calculated by means of the absolute difference and relative reduction. This variation was related to the final response of each lesion to evaluate the predictive ability of the variation itself. Twenty-seven delta features have been identified that are able to discriminate radiologic response to ICIs with statistically significant accuracy. Furthermore, the variation of nine features significantly correlates with pseudo-progression
The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs
Metazoan replication-dependent histone pre-mRNAs undergo a unique 3′-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF Im68), participates in histone RNA 3′-end processing. CF Im68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF Im68 cause significant decreases in processing efficiency. In vitro 3′-end processing is slightly stimulated by the addition of low amounts of CF Im68, but inhibited by high amounts or by anti-CF Im68 antibody. Finally, immunoprecipitation of CF Im68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF Im subunit, CF Im25, does not appear to be involved in histone RNA processin
The 68 kDa subunit of mammalian cleavage factor I interacts with the U7 small nuclear ribonucleoprotein and participates in 3′-end processing of animal histone mRNAs
Metazoan replication-dependent histone pre-mRNAs undergo a unique 3′-cleavage reaction which does not result in mRNA polyadenylation. Although the cleavage site is defined by histone-specific factors (hairpin binding protein, a 100-kDa zinc-finger protein and the U7 snRNP), a large complex consisting of cleavage/polyadenylation specificity factor, two subunits of cleavage stimulation factor and symplekin acts as the effector of RNA cleavage. Here, we report that yet another protein involved in cleavage/polyadenylation, mammalian cleavage factor I 68-kDa subunit (CF Im68), participates in histone RNA 3′-end processing. CF Im68 was found in a highly purified U7 snRNP preparation. Its interaction with the U7 snRNP depends on the N-terminus of the U7 snRNP protein Lsm11, known to be important for histone RNA processing. In vivo, both depletion and overexpression of CF Im68 cause significant decreases in processing efficiency. In vitro 3′-end processing is slightly stimulated by the addition of low amounts of CF Im68, but inhibited by high amounts or by anti-CF Im68 antibody. Finally, immunoprecipitation of CF Im68 results in a strong enrichment of histone pre-mRNAs. In contrast, the small CF Im subunit, CF Im25, does not appear to be involved in histone RNA processing
Can a genetically-modified organism-containing diet influence embryo development? A preliminary study on pre-implantation mouse embryos
In eukaryotic cells, pre-mRNAs undergo several transformation steps to generate mature mRNAs. Recent studies have demonstrated that a diet containing a genetically modified (GM) soybean can induce modifications of nuclear constituents involved in RNA processing in some tissues of young, adult and old mice. On this basis, we have investigated the ultrastructural and immunocytochemical features of pre-implantation embryos from mice fed either GM or non- GM soybean in order to verify whether the parental diet can affect the morpho-functional development of the embryonic ribonucleoprotein structural constituents involved in premRNA pathways. Morphological observations revealed that the general aspect of embryo nuclear components is similar in the two experimental groups. However, immunocytochemical and in situ hybridization results suggest a temporary decrease of pre-mRNA transcription and splicing in 2-cell embryos and a resumption in 4-8-cell embryos from mice fed GM soybean; moreover, pre-mRNA maturation seems to be less efficient in both 2-cell and 4-8-cell embryos from GM-fed mice than in controls. Although our results are still preliminary and limited to the pre-implantation phases, the results of this study encourage deepening on the effects of food components and/or contaminants on embryo development
Research on the Stability of a Rabbit Dry Eye Model Induced by Topical Application of the Preservative Benzalkonium Chloride
Dry eye is a common disease worldwide, and animal models are critical for the study of it. At present, there is no research about the stability of the extant animal models, which may have negative implications for previous dry eye studies. In this study, we observed the stability of a rabbit dry eye model induced by the topical benzalkonium chloride (BAC) and determined the valid time of this model.). Decreased levels of mucin-5 subtype AC (MUC5AC), along with histopathological and ultrastructural disorders of the cornea and conjunctiva could be observed in Group BAC-W4 and particularly in Group BAC-W5 until day 21.A stable rabbit dry eye model was induced by topical 0.1% BAC for 5 weeks, and after BAC removal, the signs of dry eye were sustained for 2 weeks (for the mixed type of dry eye) or for at least 3 weeks (for mucin-deficient dry eye)
- …