27 research outputs found

    Digital Social Innovation and Sustainability: An Analysis of the Large-Scale Retailing Sector during the Covid-19 Pandemic

    Get PDF
    The following paper analyzes the Digital Social Innovation (DSI) phenomenon and focuses on why new technological trends are essential both for the country's growth and for Sustainable Development. The study conducted focused on the consequences of Covid-19 on society and sectors in Italy, analyzing how a digital response was able to positively affect the growth of the Large-Scale Retailing (LSR) sector. The ultimate goal is to understand the extent to which digitization affects economic, social, and environmental sustainability, and how this can have a positive impact on a country's long-term growth. All this is related to the case of the large-scale retail sector, examined as one of the few to have responded better, through processes of digital evolution, to the Covid-19 Pandemic

    Social Innovation, Urban Regeneration, Circular City: A Cross- Country Analysis Post-Covid 19

    Get PDF
    The document studies urban regeneration as a sustainable development strategy for any city, emphasizing the sphere of urban reality (economic, social, and environmental). The aim is to examine the topic of urban regeneration to the concept of sustainable development after the impact of Covid-19. The paper analyzes how urban regeneration policies can contribute positively to the economic-social-environmental progress of the city. The research proposes a comparative analysis of three case studies of urban regeneration: Hammarby Sjöstad (Stockholm), Euromediterranée (Marseille), and the 'Ex Poligrafico (Rome)

    Spectral analysis of the beat-to-beat variability of arterial compliance

    Get PDF
    Arterial compliance is an important parameter influencing ventricular-arterial coupling, depending on structural and functional mechanics of arteries. In this study, the spontaneous beat-to-beat variability of arterial compliance was investigated in time and frequency domains in thirty-nine young and healthy subjects monitored in the supine resting state and during head-up tilt. Spectral decomposition was applied to retrieve the spectral content of the time series associated to low (LF) and high frequency (HF) oscillatory components. Our results highlight: (i) a decrease of arterial compliance with tilt, in agreement with previous studies; (ii) an increase of the LF power content concurrent with a decrease of the HF power, potentially reflecting changes in vasomotor tone, blood pressure and heart rate variability associated with higher sympathetic activity and vagal withdrawal occurring with tilt

    Transfer Entropy Analysis of Pulse Arrival Time - Heart Period Interactions during Physiological Stress

    Get PDF
    Although Heart Period (HP) variability is the most widely used measure to assess cardiovascular oscillations, its evaluation combined with that of Pulse Arrival Time (PAT) variability may provide additional information about cardiac dynamics and cardiovascular interactions. In this study, we computed the transfer entropy from PAT to HP in 76 subjects monitored at rest and during orthostatic and mental stress using both a model-free (k- Nearest Neighbors) and a linear parametric estimator. Our results show how the information flow between these two variables depends on the physiological condition and how the nonlinear measure captures more information than the linear one during orthostatic stress

    Mutual Information Rate Decomposition as a Tool to Investigate Coupled Dynamical Systems: Estimation Approaches, Simulations and Application to Physiological Signals

    Get PDF
    In this work, we present a framework for the computation of the MIR between two random processes X and Y, expressed equivalently as the sum of the individual entropy rates of X and Y minus their joint entropy rate, or as the sum of the transfer entropies from X to Y and from Y to X plus the instantaneous information shared by the processes at zero lag. After defining the theoretical formulation of the framework, different approaches for the estimation of each dynamic measure composing the MIR are provided: the linear model-based estimator relying on Gaussian data; two model-free estimators based on discretization, performed via uniform quantization through binning or rank ordering through permutations; a model-free estimator based on direct computation of the differential entropy via k-nearest neighbor searches

    Comparison of discretization strategies for the model-free information-theoretic assessment of short-term physiological interactions

    Get PDF
    This work presents a comparison between different approaches for the model-free estimation of information-theoretic measures of the dynamic coupling between short realizations of random processes. The measures considered are the mutual information rate (MIR) between two random processes X and Y and the terms of its decomposition evidencing either the individual entropy rates of X and Y and their joint entropy rate, or the transfer entropies from X to Y and from Y to X and the instantaneous information shared by X and Y. All measures are estimated through discretization of the random variables forming the processes, performed either via uniform quantization (binning approach) or rank ordering (permutation approach). The binning and permutation approaches are compared on simulations of two coupled non-identical Hènon systems and on three datasets, including short realizations of cardiorespiratory (CR, heart period and respiration flow), cardiovascular (CV, heart period and systolic arterial pressure), and cerebrovascular (CB, mean arterial pressure and cerebral blood flow velocity) measured in different physiological conditions, i.e., spontaneous vs paced breathing or supine vs upright positions. Our results show that, with careful selection of the estimation parameters (i.e., the embedding dimension and the number of quantization levels for the binning approach), meaningful patterns of the MIR and of its components can be achieved in the analyzed systems. On physiological time series, we found that paced breathing at slow breathing rates induces less complex and more coupled CR dynamics, while postural stress leads to unbalancing of CV interactions with prevalent baroreflex coupling and to less complex pressure dynamics with preserved CB interactions. These results are better highlighted by the permutation approach, thanks to its more parsimonious representation of the discretized dynamic patterns, which allows one to explore interactions with longer memory while limiting the curse of dimensionality

    Exploring the Predictability of EEG Signals Timed with the Heartbeat: A Model-Based Approach for the Temporal and Spatial Characterization of the Brain Dynamics

    Get PDF
    This study aims to provide a temporal and spatial characterization of the human brain activity related to the cardiac cycle in terms of regularity of the brain wave amplitudes measured from electroencephalographic (EEG) signals. To achieve this objective, linear autoregressive models are employed to characterize time-series of the spectral power extracted from EEG signals, timed with the heartbeat, by using a measure of predictability. The analysis is performed on four different timeseries acquired on healthy subjects in a resting state and describing the EEG spectral content over the whole frequency spectrum and within the θ, α and β bands. Our results indicate predictability values with targeted activations in the frontal and parieto-occipital brain regions, which reflect regular amplitude modulations of the brain waves at rest, and could be linked to the cortical processing of the heartbeat

    Information-Theoretic Analysis of Cardio-Respiratory Interactions in Heart Failure Patients: Effects of Arrhythmias and Cardiac Resynchronization Therapy

    Get PDF
    The properties of cardio-respiratory coupling (CRC) are affected by various pathological conditions related to the cardiovascular and/or respiratory systems. In heart failure, one of the most common cardiac pathological conditions, the degree of CRC changes primarily depend on the type of heart-rhythm alterations. In this work, we investigated CRC in heart-failure patients, applying measures from information theory, i.e., Granger Causality (GC), Transfer Entropy (TE) and Cross Entropy (CE), to quantify the directed coupling and causality between cardiac (RR interval) and respiratory (Resp) time series. Patients were divided into three groups depending on their heart rhythm (sinus rhythm and presence of low/high number of ventricular extrasystoles) and were studied also after cardiac resynchronization therapy (CRT), distinguishing responders and non-responders to the therapy. The information-theoretic analysis of bidirectional cardio-respiratory interactions in HF patients revealed the strong effect of nonlinear components in the RR (high number of ventricular extrasystoles) and in the Resp time series (respiratory sinus arrhythmia) as well as in their causal interactions. We showed that GC as a linear model measure is not sensitive to both nonlinear components and only model free measures as TE and CE may quantify them. CRT responders mainly exhibit unchanged asymmetry in the TE values, with statistically significant dominance of the information flow from Resp to RR over the opposite flow from RR to Resp, before and after CRT. In non-responders this asymmetry was statistically significant only after CRT. Our results indicate that the success of CRT is related to corresponding information transfer between the cardiac and respiratory signal quantified at baseline measurements, which could contribute to a better selection of patients for this type of therapy

    Local and global measures of information storage for the assessment of heartbeat-evoked cortical responses

    Get PDF
    Objective: Brain–heart interactions involve bidirectional effects produced by bottom-up input at each heartbeat, and top-down neural regulatory responses of the brain. While the cortical processing of the heartbeat is usually investigated through the analysis of the Heartbeat Evoked Potential, in this study we propose an alternative approach based on the variability in the predictability of the brain dynamics induced by the heartbeat. Methods: In a group of eighteen subjects in whom simultaneous recording of the electroencephalogram (EEG) and electrocardiogram was performed in a resting-state, we analyzed the temporal profile of the local Information Storage (IS) to detect changes in the regularity of EEG signals in time windows associated with different phases of the cardiac cycle at rest. Results: The average values of the local IS were significantly higher in the parieto-occipital areas of the scalp, suggesting an activation of the Default Mode Network, regardless of the cardiac cycle phase. In contrast, the variability of the local IS showed marked differences across the cardiac cycle phases. Conclusion: Our results suggest that cardiac activity influences the predictive information of EEG dynamics differently in the various phases of the cardiac cycle. Significance: The variability of local IS measures can represent a useful index to identify spatio-temporal dynamics within the neurocardiac system, which generally remain overlooked by the more widely employed global measures

    A New Framework for the Time- and Frequency-Domain Assessment of High-Order Interactions in Networks of Random Processes

    Get PDF
    While the standard network description of complex systems is based on quantifying the link between pairs of system units, higher-order interactions (HOIs) involving three or more units often play a major role in governing the collective network behavior. This work introduces a new approach to quantify pairwise and HOIs for multivariate rhythmic processes interacting across multiple time scales. We define the so-called O-information rate (OIR) as a new metric to assess HOIs for multivariate time series, and present a framework to decompose the OIR into measures quantifying Granger-causal and instantaneous influences, as well as to expand all measures in the frequency domain. The framework exploits the spectral representation of vector autoregressive and state space models to assess the synergistic and redundant interaction among groups of processes, both in specific bands of interest and in the time domain after whole-band integration. Validation of the framework on simulated networks illustrates how the spectral OIR can highlight redundant and synergistic HOIs emerging at specific frequencies, which cannot be detected using time-domain measures. The applications to physiological networks described by heart period, arterial pressure and respiration variability measured in healthy subjects during a protocol of paced breathing, and to brain networks described by electrocorticographic signals acquired in an animal experiment during anesthesia, document the capability of our approach to identify informational circuits relevant to well-defined cardiovascular oscillations and brain rhythms and related to specific physiological mechanisms involving autonomic control and altered consciousness. The proposed framework allows a hierarchically-organized evaluation of timeand frequency-domain interactions in dynamic networks mapped by multivariate time series, and its high flexibility and scalability make it suitable for the investigation of networks beyond pairwise interactions in neuroscience, physiology and many other fields
    corecore