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Abstract. This study aims to provide a temporal and spatial character-
ization of the human brain activity related to the cardiac cycle in terms of
regularity of the brain wave amplitudes measured from electroencephalo-
graphic (EEG) signals. To achieve this objective, linear autoregressive
models are employed to characterize time-series of the spectral power ex-
tracted from EEG signals, timed with the heartbeat, by using a measure
of predictability. The analysis is performed on four different time-series
acquired on healthy subjects in a resting state and describing the EEG
spectral content over the whole frequency spectrum and within the θ, α
and β bands. Our results indicate predictability values with targeted ac-
tivations in the frontal and parieto-occipital brain regions, which reflect
regular amplitude modulations of the brain waves at rest, and could be
linked to the cortical processing of the heartbeat.
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1 Introduction

Electroencephalography (EEG) is a non-invasive and portable technique that
provides high temporal resolution for recording and analyzing the electrical ac-
tivity of the brain. This method allows the study of brain dynamics and their
interactions with other physiological systems in the human body [1]. One promis-
ing approach for exploring such interactions is Network Physiology, which con-
siders the body as a network of multiple interacting complex systems [2, 3].
Among the various interactions between different organ systems, investigating
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the brain-heart interplay can offer valuable insights into the intricate relation-
ship between the cardiovascular system and the brain. Several studies suggest
that heart timing optimizes numerous neural processes related to homeostatic
and allostatic regulation [4]. The reciprocal influence of each organ’s activity
on the other, exerted through neural and hormonal pathways, leads to constant
bidirectional communication between the brain and the heart, with several cor-
tical regions playing a key role in the link between sensory and visceral-motor
function [5]. Therefore, studying the cortical processing of the heartbeat may
provide significant implications for our understanding of perceptual, cognitive,
and emotional processes.

In the literature, one approach to studying the cortical processing of the car-
diac signal is the Heartbeat Evoked Potential (HEP) [6]. In this approach, EEG
traces are segmented and timed with respect to the electrocardiogram (ECG)
R-peak, and the relative potential is obtained through averaging. However, this
approach does not provide any detail about the information content of the ana-
lyzed signal. Recently, an alternative approach based on studying the regularity
of the EEG signal in different phases of the cardiac cycle was introduced to
study the heartbeat-evoked responses from a different perspective [7]. Both ap-
proaches aim to investigate brain-heart interactions focusing on the impact that
the heartbeat has on the EEG dynamics. However, neither approach allows for
an assessment of EEG predictability in the frequency domain, which would be
desirable given the abundance of oscillatory content of EEG signals.

The aim of this study is to characterize the predictability of the overall
EEG spectral power, as well as of the power of the different EEG waves, when
it is timed to the heartbeat. To accomplish this, we considered multiple time-
series representing the changes of the EEG variance and of the EEG spectral
content within the θ, α and β bands [8], over several consecutive cardiac cycles.
These time series were extracted in eighteen healthy individuals monitored in a
resting condition, and were analyzed exploring their statistical properties over
the scalp, via the computation of mean and standard deviation, as well as of
their predictability based on linear autoregressive models.

2 Materials and methods

2.1 Dataset description and pre-processing

Eighteen healthy individuals, aged between 25 and 50 years, were simultaneously
monitored via EEG and ECG signals in a resting-state condition for about 10
minutes. The dataset comprises signals from 60 EEG channels (using the 10-20
system and referencing FCZ), as well as an ECG trace acquired via a one-lead
system, both of which were sampled at a frequency of 2kHz [6]. EEG signals
were band-pass filtered (0.5 - 40 Hz, FIR filter, Hamming window), visually
inspected and corrected both manually and through the FastICA (Independent
Component Analysis) algorithm for removing artifacts and finally down-sampled
to 128 Hz [6].The R peaks from the ECG signals were detected with a modified
version of the Pan-Tompkins algorithm.
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2.2 Time-series extraction

Let us consider a zero-mean stationary stochastic processX and the present state
of this process as the random variable which samplesX at time n, i.e.Xn, n ∈ ZZ.
In the frequency domain, this process can be described on the basis of its Power
Spectral Density (PSD) defined as the Fourier Transform (FT) of the auto-
correlation function of the process PX(ω) = F{rX(k)}, rX(k) = E[XnXn−k]
with k representing the time lag and ω ∈ [−π, π] the normalized sampling fre-
quency (ω = 2π f

fs
with f ∈ [− fs

2 ,
fs
2 ], fs sampling frequency). Directly from

the Wiener-Khinchine theorem for discrete time processes, the following rela-
tion holds: σ2

X = rX(0) = 1
2π

∫ π

−π
PX(ω)dω, indicating that the variance of the

process X is equal to the integral of its PSD over the whole frequency spec-
trum [9]. In this work, the PSD was estimated through the weighted covariance
(WC) method, which represents a non-parametric approach for deriving the PSD
through the FT of the sample autocorrelation function of the data [9]. The WC
estimator computes the PSD of the process X as

P̂X(ω) =

τ∑
k=−τ

w(k)r̂X(k)e−jωk; (1)

where τ ≤ N − 1 is the maximum lag for which the correlation is estimated
(with N being the number of data samples available), and w is a lag window of
width 2τ (w(k) = 0 for |k| > τ) which is normalized (0 ≤ w(k) ≤ w(0) = 1)
and symmetric (w(−k) = w(k)) [9]. Window selection is usually performed by
looking at the spectral leakage introduced by the profile of the window [10]. In
this work, we used a biased estimator for the autocorrelation function, which
guarantees semi-definite sequences and thus does not lead to negative spectral
estimates. The biased estimator of the cross-correlation function is

r̂X(k) =
1

N

N−1−k∑
n=0

X∗
nXn+k, (2)

where the latter holds for k = 0, . . . , N − 1; if k = −(N − 1), . . . ,−1, the auto-
covariance matrix is defined as r̂X(k) = r̂∗X(−k).

To obtain the time series representing the variations of the amplitude of
the various EEG rhythms, the PSD was computed on the recorded EEG signals
using the WCmethod (Hamming window, τ = 64). Specifically, the PSD was first
estimated for each EEG epoch identified as the window between two consecutive
R peaks in the ECG trace (as depicted in Fig.1a). Then, for each window, an
estimate of the amplitude of the θ, α and β brain waves was obtained averaging
the PSD profile within the frequency bands (4−8) Hz, (8−13) Hz, and (13−33)
Hz. The time series describing the variations in time of the total EEG power,
computed as the variance of the signal in each considered RR interval, was also
considered. With this procedure, four synchronous time series of length N =
300 (PEEG, PEEGθ, PEEGα and PEEGβ) were obtained from each sampled EEG
signal and for each subject (Fig.1b).
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Fig. 1. (a) Example of ECG (top) and one-channel EEG (bottom) signals of one rep-
resentative subject. Each heartbeat window is identified between two consecutive ECG
R peaks, i.e., within each RR-interval, RR(i), with i indicating the considered R-peak.
(b) Example of the four time-series extracted: total power (PEEG) and power of spec-
tral band components θ (PEEGθ), α (PEEGα), β (PEEGβ). (c) Overview of the EEG
electrode montage according with the international standard 10/20 highlighting the
position of the 60 EEG electrodes covering the scalp of the subjects with the speci-
fication of the 6 different brain areas selected (frontal (F), central (C), parietal (P),
occipital (O), right-temporal (TR), left-temporal (TL)).

2.3 Time-series characterization

Let us consider a discrete-time, zero-mean stationary stochastic process Y , whose
present state is represented by the scalar variable Yn . Assuming that Yn is a
Markov process of order p, its past history (Y −

n ) can be approximated with p
lags, i.e., Y −

n ≃ Y p
n = [Yn−1, . . . , Yn−p]

⊤ ∈ Rp×1. In the linear signal processing
framework, the dynamics of the process Y can be described by using the following
Autoregressive (AR) model:

Yn = AYp
n + Un, (3)

where A = [a1, . . . , ap] ∈ R1×p is the vector of the AR coefficients and Un is a
zero-mean white Gaussian innovation process with variance σ2

U ≡ E[UnU
⊤
n ]. In

this context a simple and useful measure for describing the dynamics of a uni-
variate stochastic process is the predictability, computed as the squared version
of Pearson’s correlation coefficient [11]:

ρ2YnY
p
n
= 1− σ2

U

σ2
Y

. (4)

This is a measure of self-predictability quantifying the portion of the variance
of Y that can be predicted from the exclusive knowledge of its own dynamics
and is also inversely related to the complexity of the time series [12]. While
the variance of the process Y can be directly computed from the time series,
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the innovation variance σ2
U can be estimated via the identification procedure of

the AR model (3) that is typically performed through the well-known Ordinary
Least Square (OLS) method [12]. In brief, considering N consecutive time steps,
a compact representation of the AR model (in Eq. (3)) can be defined as y =
Ayp +U , where y = [Yp+1, . . . , YN ] and U = [Up+1, . . . , UN ] are the 1× (N − p)
vectors and yp = [Yp

p+1, . . . ,Y
p
N ] is a p×(N−p) matrix collecting the regressors

terms. The method estimates the coefficient vector through the OLS formula:
Â = y(yp)⊤[yp(yp)⊤]−1; then, the innovation process is estimated as the residual

time-series Û = y − Âyp, whose variance σ̂2
U is an estimate of the innovation

variance. It is worth of note that in this work we used a logarithmic version of
the squared correlation coefficient as defined in Eq. (4) that under the Gaussian
assumption is related to the well known measure of Information Storage [12].

The logarithmic predictability measure was used for characterizing the EEG
signals timed with heartbeat in terms of regularity. The measure was computed
on the four time-series for each subject and each of the 60 EEG channels consid-
ered. The optimal model order p was estimated through the Akaike Information
Criteria (AIC) (p=3.0846±2.3614).

The statistical significance of each computed predictability measure was as-
sessed using surrogate data. Specifically, surrogates of each analyzed power time
series were constructed by randomizing the order of the data in the series, thus
destroying the relationship between their present and past states. The procedure
was repeated 100 times, for each time-series, EEG channel and for each subject,
estimating the predictability value at each iteration. The value of predictabil-
ity computed on the original series was then compared with a threshold set at
the 95th percentiles of the distribution of predictability values computed on the
surrogates, and the original value was considered statistically significant when
it was above this threshold.

2.4 Statistical analysis

For each EEG channel and for each subject, the four different time-series (PEEG,
PEEGθ, PEEGα, PEEGβ) were averaged over the 300 cardiac cycles analyzed to
obtain MEAN value. This process was then repeated to obtain the standard
deviation of each time-series, indicated as SD. Concerning the predictability
analysis, one value was obtained for each EEG channel and each subject directly
from the estimation procedure described in the previous section. This resulted
in a distribution of each parameter (i.e., average value (MEAN), standard devi-
ation (SD) and predictability measure (RHO)), for each electrode and for each
time series across the 18 subjects. Since, the null hypothesis of normality of the
Shapiro-Wilk test was rejected for more than 50% of electrodes, non-parametric
statistics were used.

To determine if there were any changes in EEG activity, we assessed the
modulation of a specific parameter (MEAN, SD, or RHO) in each EEG channel
across three frequency bands (θ, α, and β). Paired samples Wilcoxon tests were
used to compare the distributions of each parameter across frequency bands. To
correct for multiple comparisons, we applied a Bonferroni correction with n=3.
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We also analyzed spatial variations across the scalp by identifying six regions
based on the electrode locations shown in Figure 1.c: frontal (F), central (C),
parietal (P), occipital (O), right-temporal (TR), and left-temporal (TL). For
each subject and time series, we calculated the mean of the MEAN, SD, and
RHO parameters for each region by averaging the values from all the electrodes
in that region. We then used Wilcoxon tests for independent data to compare
pairs of brain regions. To correct for multiple comparisons, we used a Bonferroni
correction with n=15.

3 Results

Figure 2.a-b shows the scalp distributions of the MEAN and SD parameters
obtained from each time-series, averaged across participants, along with the cor-
responding boxplots reporting the distributions of their average values computed
across electrodes belonging to the same brain regions identified in Fig. 1.c.

Figure 2.a and Figure 2.b show similar distributions of mean power and
its variability values over the scalp. The θ rhythm exhibits the most homoge-
neous scalp activity, with the lowest values of MEAN and SD. Higher frequency
spectral components tend to have less uniform distribution. Specifically, the α
rhythm appears to have the greatest impact on EEG activity, with a distribu-
tion superimposed on that of total power, and the highest values localized in the
parieto-occipital regions. Conversely, the β rhythm displays higher mean power
activity in the fronto-occipital regions. The scalp distributions reveal apparent
differences between groups of electrodes; however, the statistical analysis com-
paring the distributions of MEAN and SD across different scalp regions does
not confirm these differences, as shown by the boxplots presented at the bot-
tom of panels a and b. Figure 2.c-d present the results of the statistical analysis
comparing the distributions of the MEAN and SD parameters between pairs of
frequency bands for each scalp electrode across the 18 subjects. The average
spectral power in α and β bands is significantly higher than that in the θ band
across most of the scalp areas, with the exception of the frontal region. In con-
trast, the SD is greater in the α band, resulting in significant differences when
compared to θ and β bands across the entire scalp (Figure 2.d).

Figure 3.a shows the scalp distributions of the RHO parameter obtained
from each analyzed time-series, averaged across the 18 participants. The α and
β rhythms exhibit the highest RHO values, and their spatial patterns overlap
with those observed in the total power time-series, with the highest predictability
values in the frontal and parieto-occipital brain regions. However, when compar-
ing RHO distributions across brain regions (Fig. 3.b), no statistically significant
differences are found.

Figure 3.c displays the results of a statistical analysis comparing the RHO
parameter distributions across subjects for different frequency bands in each
scalp electrode. The results confirm the presence of statistically significant higher
predictability values in α and β bands compared to the θ band. These statistical
significances are distributed across almost all the scalp, with the exception of
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Fig. 2. Scalp distributions of the average values across subjects of MEAN (a) and
SD (b) for the four time-series (expressed in µV 2) with the corresponding distributions
across participants of their average values over the six brain regions (frontal (F), central
(C), parietal (P), occipital (O), right-temporal (TR), left-temporal (TL)), reported
as box plots. Results of the statistical analysis performed by comparing, for a given
electrode, MEAN (c) and SD (d) of the time-series θ,α and β. Wilcoxon test; Bonferroni
correction (α = 0.05/3). Given two generic frequency bands ri (row) and rj (column),
black filled circles on a specific position over the scalp denote that ri is statistically
significantly greater than rj . For the opposite scenario blue filled circles are used.

the frontal, central, and left-parietal brain regions for comparisons between β
and θ bands, which do not show any statistically significant differences.

Figure 4 presents the results of surrogates analysis to determine the statis-
tical significance of predictability measure calculated for each time-series. The
time-series were grouped by brain regions, and the overall results are summa-
rized using barplots. The results demonstrate that, with the exception of the
time-series representing average power in the θ band, the predictability of the
remaining time-series show statistical significance in approximately 50% of sub-
jects, regardless of the brain region considered. The parieto-occipital regions
exhibit the highest values of statistical significance for both total and α power.
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Fig. 3. (a) Scalp distributions of the mean values, computed in the population of
participants, of the predictability measure (expressed in nats) computed for the four
time-series (total power, θ, α, β powers). (b) Boxplots reporting the distributions across
participants of the predictability measure averaged in the six brain regions (frontal
(F), central (C), parietal (P), occipital (O), right-temporal (TR), left-temporal (TL)).
(c) Results of the statistical analysis performed to compare the distributions across
participants of the RHO values in different frequency bands for a given electrode.
Given two generic frequency bands ri (row) and rj (column), black filled circles on a
specific position over the scalp denote that ri is statistically significantly greater than
rj by using the Wilcoxon signed-rank test with Bonferroni correction (α = 0.05/3).

However, this trend is not observed for the β band, which shows a homogeneous
distribution of statistical significance across different brain regions.

%

%

%

Fig. 4. Bar plots reporting the average percentage significance values across electrodes
belonging to the same regions, for the four time-series analyzed.
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4 Discussion

This study aimed to explore the spatiotemporal distributions of various statis-
tical parameters, including mean, standard deviation, and predictability, com-
puted over distinct time-series representing the frequency content of EEG sig-
nals evaluated at the time scale of the cardiac cycle. The study employed a
non-parametric approach to estimate the PSDs of brain signals in a cohort of 18
healthy participants at resting-state. Our investigation focused primarily on the
frequency bands known to be relevant to the brain activity, namely θ, α, and β,
as well as the total power of the EEG signals.

The analysis of MEAN and SD parameters shown in Figure 2 reveals an ho-
mogeneous distribution of these parameters over the scalp, documented together
with a prominent activity in the α frequency band, which demonstrates to be
the largest contribution to the total power. As several studies report, it is well
known that prominent brain activity in the α band in the parieto-occipital region
is expected during a resting phase with eyes open [1, 13]. As depicted in Fig. 3,
this observation may suggest a more regular activity of the brain promoted by
the activation of the default mode network, whose activity has been associated
in the literature with an increase in EEG power in the α and β frequency bands
in parietal and occipital regions [14]. Investigations of heartbeat cortical pro-
cessing via HEP highlighted similar targeted activations in these regions [15]. As
regards the regularity of the time series of brain wave amplitude, we find that
the time series of α and β brain wave amplitudes displays the higher levels of
predictability. This is also confirmed by the analysis of the significance of the
predictability computed on the time-series extracted from the EEG signals and
shown in Figure 4 which highlights the maximum significance level reaching ap-
proximately 50% only in the parieto-occipital regions for the total power, for the
power in α band, and for the β power over the whole scalp.

Although a spatial pattern for the MEAN, SD, and RHO parameters when
computed for the total power and the spectral content in the α band is evident
in the results, there are no statistically significant differences observed among
the various brain regions. However, a thorough analysis of the results shown in
Figures 2 and 3 reveals specific trends where parieto-occipital regions appear to
be more involved, irrespective of the statistical measure used. While lack of sta-
tistical significance could be due to the presence of high inter-subject variability
at rest, leading to a high standard deviation in the analyzed distributions [16],
the current results indicate that the mechanisms determining the occurrence of
predictable brain wave amplitudes are not region-specific.

5 Conclusions

This study introduced an approach for characterizing the brain dynamics by
extracting amplitude variability time series of brain rhythms measured at a
time scales compatible with the heart rhythm. The time series were analyzed
by examining their average and variability values, as well as their predictability.
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The results show a greater regularity in the amplitude modulations of the α
and β brain waves, suggesting that these rhythms could be more involved in the
cortical processing of the heartbeat in the resting state. Although these findings
are consistent with other studies in the literature, it is important to note some
limitations. These include the relatively low significance of the predictability
measure, the small sample size, and the use of a linear estimator that may not
detect possible non-linear behaviors.

This study should be considered as a starting point for future investigations
focusing on bidirectional analysis of brain-heart interactions and aimed to better
understand the underlying physiological mechanisms of brain-heart interplay. We
suggest that these interactions should be investigated primarily looking at the
correlation between α and β brain wave amplitudes and heart rate variability.
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