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Abstract—While the standard network description of complex
systems is based on quantifying the link between pairs of system
units, higher-order interactions (HOIs) involving three or more
units often play a major role in governing the collective network
behavior. This work introduces a new approach to quantify pair-
wise and HOIs for multivariate rhythmic processes interacting
across multiple time scales. We define the so-called O-information
rate (OIR) as a new metric to assess HOIs for multivariate
time series, and present a framework to decompose the OIR
into measures quantifying Granger-causal and instantaneous
influences, as well as to expand all measures in the frequency
domain. The framework exploits the spectral representation
of vector autoregressive and state space models to assess the
synergistic and redundant interaction among groups of processes,
both in specific bands of interest and in the time domain
after whole-band integration. Validation of the framework on
simulated networks illustrates how the spectral OIR can highlight
redundant and synergistic HOIs emerging at specific frequen-
cies, which cannot be detected using time-domain measures.
The applications to physiological networks described by heart
period, arterial pressure and respiration variability measured
in healthy subjects during a protocol of paced breathing, and
to brain networks described by electrocorticographic signals
acquired in an animal experiment during anesthesia, document
the capability of our approach to identify informational circuits
relevant to well-defined cardiovascular oscillations and brain
rhythms and related to specific physiological mechanisms involv-
ing autonomic control and altered consciousness. The proposed
framework allows a hierarchically-organized evaluation of time-
and frequency-domain interactions in dynamic networks mapped
by multivariate time series, and its high flexibility and scalability
make it suitable for the investigation of networks beyond pairwise
interactions in neuroscience, physiology and many other fields.

Index Terms—information dynamics, spectral analysis,
Granger Causality, redundancy and synergy, time series
analysis, cardiovascular control, network physiology, network
neuroscience
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I. INTRODUCTION

THE increasing availability of large-scale and fine-grained
datasets is nowadays boosting the development of new

methods for the data-driven modelling of complex systems.
Among them, the network representation is probably the
most used approach for the description of the multivariate
time series measured from these systems [1]. Paradigmatic
instances of this approach come, among many other fields,
from neuroscience and physiology, where the functional con-
nections among different brain regions or among different
organ systems are pervasively investigated in the emerging
fields of Network Neuroscience [2] and Network Physiology
[3]. In this context, data-driven methods for the inference
and analysis of complex networks are based on building a
network model out of a set of observed time series, in which
nodes represent the units composing the observed system (be-
ing, e.g., distinct neural populations or physiologic systems)
and connecting edges map functional dependencies between
units (descriptive, e.g., of brain connectivity or cardiovascular
interactions) [4], [5]. Functional dependencies are typically
assessed by computing pairwise measures, i.e. measures that
describe interactions between two nodes of the analyzed
network, on the time series reflecting the dynamic activity of
the nodes. The formulation of these measures stems from the
availability of several theoretical approaches which formalize
the interaction between variables or processes in a network,
including the concepts of multivariate spectral analysis [6], [7],
Granger causality [8]–[11], and directed information transfer
and information flow [12]–[14], applied to computational
systems in the brain and in physiology, but also in other cross-
disciplinary fields [15]–[23].

Nevertheless, in spite of the ubiquitous utilization of pair-
wise measures to describe interactions in a network, there is
mounting evidence that such measures cannot full capture the
interplay among the multiple units of a complex system [24].
In fact, complex networks very often exhibit collective behav-
iors which are integrated at different hierarchical levels, thus
displaying interactions that involve more than two network
nodes. These so-called high-order interactions (HOIs) occur
for instance when brain dynamics require the joint examination
of multiple units to be predicted accurately [25], or when
cardiovascular interactions are influenced by the effects of the
respiratory activity [15].
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The recognized need to study networks beyond the frame-
work of pairwise interactions calls for the theoretical definition
and practical development of methods to assess HOIs among
multiple time series. Various metrics solidly grounded in
the general field of information theory have been proposed
in recent years for this purpose, all attempting to capture
the redundant or synergistic information shared by groups
of random variables or processes [25]–[31]. In broad terms,
synergy arises from statistical interactions that can be found
collectively in a network but not in parts of it considered
separately, while redundancy refers to group interactions that
can be explained by the communication of sub-groups of vari-
ables. The most popular measures of synergy and redundancy
are those based on interaction information (II, [26]) and on
the partial information decomposition (PID, [27]) of random
variables, also extended to assess directed interactions in
dynamic physiological processes [25], [29]. The II is the first
measure proposed to detect synergy and redundancy through
their overall balance (the measure is positive when redundancy
prevails over synergy, and negative in the opposite case) [26];
the PID provides a different perspective, returning separate and
non-negative measures of synergy and redundancy [27] at the
cost of not being uniquely defined and difficult to generalize to
more than three variables or processes [23], [30]. A recently-
proposed measure is the so-called O-information (OI), a metric
which extends the II to reveal synergy- and redundancy-
dominated interactions in a network of multiple interacting
variables [31]. Its symmetric nature, the fact that it scales
nicely with the network size, and the possibility to compute it
for dynamic processes make the OI a very promising tool for
the practical analysis of multivariate dynamics [32].

A main limitation of the information-theoretic measures
proposed so far to investigate HOIs in network systems is
that they characterize the system dynamics with one single
value reflecting the aggregate effect of interactions possibly
occurring at different time scales. However, the time series
measured at the nodes of complex networks are typically
rich of oscillatory content: for instance, cardiovascular and
electroencephalographic (EEG) interactions occur through the
coupling of rhythms in different frequency bands with different
physiological meaning [9], [33]. Remarkably, the amplitude
of oscillations and the coupling strength may vary with
frequency, and HOIs can have different nature for different
rhythms because synergistic and redundant behaviors may
alternate in separate frequency bands [7], [17].

Therefore, there is the need to connect the spectral rep-
resentation of information-theoretic measures with the HOI
description of complex networks to overcome spectral pairwise
approaches [34], [35]. To this end, the present study introduces
a new framework for the time- and frequency-domain analysis
of HOIs in multivariate stochastic processes mapping the
activity of network systems. Building on our recent efforts to
compute multivariate information measures in the frequency
domain [7], [17], we generalize and extend them in many
directions. First, we define a new measure, the O-information
rate (OIR), which generalizes the mutual information rate
(MIR) of bivariate processes using the same rationale whereby
the OI generalizes the mutual information (MI) between ran-

dom variables. Then, we provide both a causal decomposition
and a spectral expansion of the OIR, thereby connecting
it with well-known and widely used measures of coupling
and Granger causality formulated in the time and frequency
domains [35]. Causal and spectral measures are defined from
the vector autoregressive (VAR) formulation of multivariate
Gaussian stochastic processes [36], in a way such that the
spectral integration of each frequency domain measure yields
the corresponding time domain measure. Further, to allow their
closed-form computation, all measures composing the time-
and frequency-domain OIR are implemented exploiting the
state space (SS) representation of VAR processes [37].

In this paper, the proposed framework is first illustrated on
theoretical examples of simulated VAR processes featuring
HOIs of different type and order. Then, it is tested in two
practical applications of of brain and physiological networks
where HOIs are expected to play a crucial role in governing
collective dynamics: beat-to-beat variability series of heart
period, arterial pressure and respiration measured during a
protocol of paced breathing [15], and multi-electrode invasive
EEG signals acquired in an animal experiment of altered
consciousness [18]. The time- and frequency-domain measures
of bivariate and higher-order interactions provided by the
framework are collected in the OIR Matlab toolbox, described
in the supplemental material of this article and freely available
for download at www.lucafaes.net/OIR.html.

II. METHODS

A. Theoretical Background

This preliminary section reviews the basic and advanced
concepts of information theory, applied to random variables
and random processes, that pose the basis for the new frame-
work developed in Sect. II.B.

1) Entropy measures for random variables: The main
measures of information theory are entropy and mutual in-
formation (MI), which quantify respectively the information
contained in a random variable V1, and the information shared
by two variables V1 and V2, elaborating their probability
distributions as follows:

H(V1) = −E[log p(v1)], (1)

I(V1;V2) = E
[
log

p(v1, v2)

p(v1)p(v2)

]
, (2)

where p(•) and p(•, •) denote joint and marginal probabili-
ties, and E[•] is the statistical expectation operator. The two
quantities are linked by the known equation I(V1;V2) =
H(V1) +H(V2)−H(V1, V2) [38].

While the MI in (2) quantifies the interaction between two
variables, the interaction information (II) is a long-known
measure quantifying the interaction among three variables
[26], comparing the information shared by one variable with
the two other variables when the latter are taken individually
or when they are taken together:

I(V1;V2;V3) = I(V1;V2) + I(V1;V3)− I(V1;V2, V3). (3)
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To perform information-theoretic analysis of HOIs, the II
has been recently generalized to quantify interactions among
an arbitrarily large number of random variables through the
introduction of the so-called O-information (OI) [31]. The OI
of a group of N random variables, V N = {V1, . . . , VN}, is
defined elaborating the entropy of subsets of V N as follows:

Ω(V N ) = (N − 2)H(V N ) +

N∑
i=1

[H(Vi)−H(V N
−i)], (4)

where V N
−i = V N\Vi is the subset of variables where Vi

is removed. The OI is a symmetric measure assessing the
”organization structure” of a group of random variables; it
reduces to the II when evaluated for three variables (i.e.,
Ω(V 3) = I(V1;V2;V3)).

The II and the OI defined in (3) and (4) are symmetric
measures capturing the balance between high- and low-order
statistical constraints in the interactions occurring within V N :
Ω(V N ) > 0 reflects a dominance of low-order constraints,
also known as redundancy, while Ω(V N ) < 0 indicates that
high-order constraints prevail, denoting synergy [26], [31].

2) Entropy measures for random processes: The infor-
mation measures reviewed above suffer from the limitation
that they only allow a static analysis of random variables
where the temporal information is disregarded. To perform
a dynamic analysis one needs to consider random processes,
intended as collections of random variables sorted in temporal
order. The generic random process Xi is composed by the
random variables Xi(tn), where n ∈ N is the temporal
index; typically tn = n∆t, where ∆t = 1/fs, with fs the
sampling frequency. To highlight the dynamic nature of the
process, we denote as Xi(tn), Xi(tn−k:n−1), and Xi(t<n) =
limk→∞ Xi(tn−k:n−1) the random variables that sample the
process at the present time n, over the past k lags, and over the
whole past history, respectively. Then, under the assumption
of stationarity, the information contained in Xi is given by
the entropy rate, which quantifies the density of the average
information in the process as [38]:

HXi
= lim

k→∞

1

k
H(Xi(tn−k:n−1)). (5)

Moreover, if two processes Xi and Xj are considered, the
information shared by the processes per unit of time is the
mutual information rate (MIR) defined as [39]

IXi;Xj
= lim

k→∞

1

k
I(Xi(tn−k:n−1);Xj(tn−k:n−1)). (6)

Note that, with our notation, H(•) and I(•; •) denote the
entropy and MI for random variables, while H(•) and I(•;•)

denote the entropy and MI rates for random processes. The
entropy rate of a process can be formulated as as the condi-
tional entropy of the present of the process given its past,
i.e. HXi

= H(Xi(tn)|Xi(t<n)) [38]. Moreover, starting
from the fact that the MIR can be formulated in terms of
entropy rates as IXi;Xj

= HXi
+ HXj

− HXi,Xj
[38],

some elaborations (see e.g. [19], [35]) lead to the important
expansion IXi;Xj = TXj→Xi + TXi→Xj + IXi •Xj , where
TXj→Xi

= I(Xi(tn);Xj(t<n)|Xi(t<n)) and TXi→Xj
=

I(Xj(tn);Xi(t<n)|Xj(t<n)) are the transfer entropy (TE)
from Xj to Xi and from Xi to Xj , and IXi •Xj =
I(Xi(tn);Xj(tn)|Xj(t<n), Xj(t<n)) represents the instanta-
neous information shared between Xi and Xj ; I(•; •|•) denotes
conditional MI for three random variables. The TE is a well-
known measure of directed information transfer between two
stochastic processes [40], while the instantaneous transfer
is a symmetric measure of information shared at zero lag,
quantified after removing the common information with the
past states of the processes.

B. Framework to measure High-Order Interactions in multi-
variate processes

This section presents the formulation of the framework
developed to measure dynamic interactions among Q stochas-
tic processes Y Q = {Y1, . . . , YQ}, grouped in M blocks
XM = {X1, . . . , XM} which can be thought as descriptive
of the activity of a network formed by M dynamic systems
(the ith block has dimension Mi, so that Q =

∑M
i=1 Mi). With

reference to the applications reported in Sect. IV, the different
dynamic systems analyzed may be M brain regions or M
organ systems, where each group process Xi, i = 1, . . . ,M ,
may represent the neural activity of a given brain region or
organ system, and each scalar process Yj ∈ Xi, j = 1, . . . ,Mi,
maps the time course of the jth neural signal recorded inside
the ith region (e.g., the EEG at one frontal electrode) or the
jth physiological time series belonging to the ith organ system
(e.g., systolic or diastolic pressure for the circulatory system).
In the following subsections, we define the O-information rate
(OIR) as a new measure to assess HOIs among processes,
elaborate its causal decomposition, implement its computation
in the frame of linear parametric models, and provide its spec-
tral expansion. The framework, whose schematic description
is depicted in Fig. 1, allows to study pairwise and higher-order
interactions among the analyzed processes both in specific
frequency bands related to meaningful rhythmic activities (e.g.,
brain waves or cardiovascular oscillations) or considering the
overall dynamics in the time domain (e.g., related to brain
connectivity or cardiorespiratory coupling).

For our analysis, the processes are assumed to be station-
ary and ergodic, to allow the time-independent computation
of dynamic information measures from individual process
realizations [12], [29], and jointly Gaussian distributed, to
exploit the formalism linking information-theoretic measures
with linear regression models [10], [29] and spectral quantities
[7], [17], [35].

1) O-information rate: While the MIR defined in (6) is a
dynamic measure of pairwise interdependence between two
random processes, HOIs can be assessed generalizing to
multiple random processes the OI measure defined in (4) for
multiple random variables. Here, following recent works [31],
[32], we measure the organization structure of a group of
stationary stochastic processes introducing the so-called O-
information rate (OIR). Specifically, the OIR of the analyzed
group of M processes, ΩXM , is defined via the recursion (see
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also Fig. 1a)

ΩX2 = 0, (7a)
ΩXN = ΩXN−1 +∆XN ;XN−1 , 3 ≤ N ≤ M (7b)

where X2 = {X1, X2}, XN−1 = {X1, ..., XN−1}, and
XN = {XN−1, XN}, and where the variation of the OIR
obtained with the addition of XN to XN−1 is the quantity

∆XN ;XN−1 = (2−N)IXN ;XN−1 +

N−1∑
i=1

IXN ;XN−1
−i

, (8)

with XN−1
−i = XN−1\Xi. While the OIR can be defined as

in (4) using entropy rates in place of entropies, the equiva-
lent formulation (7) highlights the possibility of an iterative
computation and evidences the OIR gradient (8) which takes
a main role in such computation (see Fig. 1a). The OIR is
a symmetric measure quantifying redundant and synergistic
HOIs among the processes in XN respectively when ΩXN > 0
and ΩXN < 0. In turn, the sign of the OIR gradient detects the
informational character of the circuits which link the N th pro-
cess with the remaining N −1 processes: the information that
XN shares with XN−1 is redundant when ∆XN ;XN−1 > 0,
while it is synergistic when ∆XN ;XN−1 < 0.

Note that when N = 3 processes X3 = {X1, X2, X3}
are considered, substituting (7a) in (7b) yields ΩX3 =
∆X3;{X1,X2}, which expanded with (8) gives a dynamic
version of the II measure defined in (3), which we denote
as interaction information rate (IIR):

Ω{X1,X2,X3} = IX3;X2
+ IX3;X1

− IX3;{X1,X2}. (9)

2) Causal decomposition of the O-information rate: To
decompose the OIR increment into causal and instantaneous
contributions, we note that ∆XN ;XN−1 is obtained inserting
N different MIR values in (8), i.e. the MIRs between the
processes Z1 = XN and Z2 = XN−1

−i where Z1 is fixed and
Z2 varies with i = 0, 1, . . . , N−1 (Z2 = XN−1 when i = 0).
Then, using Z1 and Z2 in the MIR expansion [35]

IZ1;Z2
= TZ1→Z2

+ TZ2→Z1
+ IZ1 •Z2

, (10)

and substituting into (8) allows to decompose the OIR gradient
as

∆XN ;XN−1 = ∆XN→XN−1 +∆XN−1→XN
+∆XN •XN−1 ,

(11)
where the three terms

∆XN→XN−1 = (2−N)TXN→XN−1 +

N−1∑
i=1

TXN→XN−1
−i

∆XN−1→XN
= (2−N)TXN−1→XN

+

N−1∑
i=1

TXN−1
−i →XN

∆XN •XN−1 = (2−N)IXN •XN−1 +

N−1∑
i=1

IXN •XN−1
−i

(12)

quantify the informational character of the directed informa-
tion transfer from XN to XN−1, of the directed informa-
tion transfer from XN−1 to XN , and of the instantaneous
information shared between XN−1 and XN , respectively; the
informational character of each term is redundant when the
term is positive, and synergistic when the term is negative.

3) Linear parametric formulation: This subsection reports
the parametric implementation of the OIR decomposition,
which exploits the knowledge that linear regression models
capture all of the entropy differences relevant to the various
information measures when the observed processes have a
joint Gaussian distribution [10], [29]. As a first step, the
analyzed set of stochastic processes Y Q is described as a
vector autoregressive (VAR) process of order p:

Y (tn) =

p∑
k=1

A(k)Y (tn−k) + U(tn), (13)

where Y (tn) = [Y1(tn) · · ·YQ(tn)]
⊺ is a Q-dimensional

vector random variable collecting the present state of all
processes, A(k) is the Q × Q matrix of the model coef-
ficients relating the present with the past of the processes
assessed at lag k, and U(tn) = [U1(tn) · · ·UQ(tn)]

⊺ is a
vector of Q zero-mean white and uncorrelated innovation
variables with Q × Q positive definite covariance matrix
ΣU = E[U(tn)U(tn)

⊺]. While the VAR model (13) provides
a global representation of the overall multivariate process,
to describe the linear interactions relevant to the subset of
processes Z = {Z1, Z2} = {XN , XN−1

−i } for which the MIR
decomposition is sought we need to define a reduced VAR
model involving only those processes. This reduced model is
formulated as

Z(tn) =

∞∑
k=1

B(k)Z(tn−k) +W (tn), (14)

where Z(tn) and W (tn) are column vectors of dimension R =
R1 + R2 (R1 = MN is the dimension of Z1 = XN and R2

is the dimension of Z2 = XN−1
−i ), and B(k) is an R × R

coefficient matrix.
An issue with great practical relevance is that the order

of the reduced model (14) is typically infinite and thus
very difficult to identify from finite-length time series. The
approach followed to face this issue in the context of Granger
causality analysis is essentially based on truncating to p the
order of the reduced model, and estimating its parameters from
the relevant subset of the original data. Though simple, this
approach exposes to a trade-off between bias and variance
of the estimates that prevents reliable model identification in
most cases [41]. To solve this issue, methods which essentially
extract the parameters of the reduced model from those of the
full model have been proposed [42], [43]. Along this line, we
overcome the issue related to the formation of the reduced
models working in the frame of SS models [37]. This class
of models is the most appropriate to use because it is closed
under the formation of reduced models: in fact, any reduced
process obtained from the VAR process (13) is actually a VAR
process with a moving average component, or equivalently
a finite-order SS process [43]. Therefore, using SS models
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+
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N
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c) Y1, Y2,  , YQ
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Freq. domain 
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A, C, K, V        

Submodel
extraction

1 2Z ; Z   

1 2
fZ ; Z   (ω) 

Fig. 1. Schematic description of the framework proposed to assess pairwise and higher-order interactions in networks of random processes in the time and
frequency domains. (a) Iterative computation of the O-information rate (OIR) for a group of M multivariate (vector) processes. The procedure realizes Eq. (7),
initializing to zero the OIR for two processes and then implementing a cycle where the OIR of N processes, ΩXN , is computed adding to the OIR of N − 1
processes, ΩXN−1 , the gradient relevant to the addition of the Nth process XN , ∆XN ;XN−1 ; the cycle stops when the OIR of the M processes, ΩXM ,
is obtained. (b) Iterative computation of the Spectral OIR for the M vector processes. The procedure follows the same steps of the time-domain procedure in
(a), applied to the spectral OIR functions νXN−1 (ω) and νXN (ω); the core of the procedure is the computation of the OIR gradient δXN ;XN−1 (ω), which
is obtained as a linear combination of N of mutual information rate (MIR) functions fZ1;Z2 (ω) computed varying Z2 = XN−1

−i with fixed Z1 = XN

(Eq. (20)). Importantly, each time-domain measure is obtained as half the integral of the corresponding spectral function over the whole frequency range.
(c) computation of the spectral MIR for a given pair of processes Z1 and Z2. After identifying a vector autoregressive model (VAR) from the Q original
processes and converting it into a state space model (SS), a submodel is extracted which contains the parameters relevant only to Z = {Z1, Z2}; the submodel
is analyzed in the frequency domain to derive the spectral measures of Granger and causality and instantaneous interaction that compose the spectral MIR
fZ1;Z2

(ω) according to (23).

allows to identify reduced models from the parameters of the
original VAR model estimated with a single regression, thus
guaranteeing high computational reliability.

Here, we exploit the SS modeling approach to compute all
the MIR terms needed to derive the OIR (7) and to perform the
related causal decomposition (11,12) without the need of re-
identifying the parameters of the reduced models from subsets
of data (Fig. 1c). First, we describe the original process Y
obeying the VAR representation (13) using the SS model

S(tn+1) = AS(tn) +KU(tn), (15a)
Y (tn) = CS(tn) + U(tn), (15b)

where S(tn) = [Y (tn−1)
⊺ · · ·Y (tn−p)

⊺]⊺ is the pQ-
dimensional state process and the SS parameters (A,C,K,V)
are given by the matrices C = [A(1) · · ·A(p)], A =
[C; IQ(p−1)0Q(p−1)×Q], K = [IQ0Q×Q(p−1)]

⊺, and V =
E[U(tn)U(tn)

⊺] = ΣU (I and 0 are the identity and null
matrices). Then, to represent the R-dimensional process Z =
{Z1, Z2} formed by taking from Y the subset of processes
indexed by the elements of r = {r1, r2} ⊂ {1, . . . , Q} (where
ri contains the Ri indices of Zi, i = 1, 2), we replace (14) with
a reduced SS model with state equation (15a) and observation
equation Z(tn) = C(r,:)S(tn) + W (tn). This model has
parameters (A,C(r,:),KVK⊺,V(r,r),KV(:,r)), where the su-
perscripts denote selection of the rows and/or columns with
indices r in a matrix. To exploit the reduced SS model for the
Granger-causal analysis of Z it is necessary to lead its form
back to that of (15), which reads [37]

S(tn+1) = ÃS(tn) + K̃W (tn), (16a)

Z(tn) = C̃S(tn) +W (tn). (16b)

The parameters of the reduced model (16) are (Ã, C̃, K̃, Ṽ),
of dimension pQ × pQ,R × pQ, pQ × R,R × R, and can
be derived directly from the parameters A(k) and ΣU of

the original full VAR model (13) [37]: while the state and
observation matrices are easily determined as Ã = A and
and C̃ = C(r,:), the gain K̃ and the reduced innovation
covariance Ṽ = E[WnW

⊺
n ] = ΣW must be obtained by

solving a discrete algebraic Riccati equation (DARE) (see refs.
[23], [37] for detailed derivations). After identification, the
model (16) is analyzed in the frequency domain to compute
the spectral components of the MIR, as well as their time-
domain counterparts through spectral integration, as reported
in the next subsection (see also Fig. 1b).

4) Frequency domain expansion: The linear parametric
representation of the dynamic interactions among the observed
processes can be translated in the frequency domain, in order
to provide spectral equivalents of the MIR and OIR measures
and of their causal decompositions. Starting from the subset
Z = {Z1, Z2} of the observed multivariate process, described
by the SS model (16), taking the Fourier Transform (FT) of
the state equation (16a) yields

S(ω) = ÃS(ω)e−jω + K̃W (ω)e−jω, (17)

where S(ω) and W (ω) are the Fourier transforms of Z(tn)
and W (tn), ω ∈ [−π, π] is the normalized angular frequency
(ω = 2π f

fs
with f ∈ [− fs

2 ,
fs
2 ]), and j =

√
−1. From (17)

it is easy to derive the PSD of the state process, S(ω), to be
substituted in the FT of (16b) to obtain Z(ω) = H(ω)W (ω),
which evidences the transfer function matrix

H(ω) =
(
IR + C̃[IpQ − Ãe−jω]−1K̃e−jω

)
W (ω). (18)

The R×R matrix H(ω) contains the transfer functions relating
the FTs of the innovation processes in W to the FTs of the
processes in Z, and can be used together with the innovation
covariance matrix to derive the R×R power spectral density
(PSD) matrix of the process Z using spectral factorization:

SZ(ω) = H(ω)ΣWH∗(ω). (19)
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The matrix SZ(ω) can be then factorized in blocks to make
explicit the power spectral densities of Z1 and Z2, SZ1(ω) and
SZ2(ω), as diagonal blocks, and the cross-spectral densities
between Z1 and Z2, SZ1Z2

(ω) and SZ2Z1
(ω), as off-diagonal

blocks. From this factorization, a logarithmic spectral measure
of the interdependence between Z1 and Z2 is defined by [34]

fZ1;Z2
(ω) = log

|SZ1(ω)||SZ2(ω)|
|SZ(ω)|

; (20)

this measure quantifies the total (symmetric) coupling between
Z1 and Z2 and is related to the so-called block coherence
[44]. Moreover, after factorizing in Ri × Ri diagonal blocks
and Ri×Rj off-diagonal blocks also the transfer and innova-
tion covariance matrices H(ω) and ΣW , logarithmic spectral
measures of the causal effect of Zj on Zi (i, j = 1, 2) can be
computed as [34]

fZj→Zi
(ω) = log

|SZi
(ω)|

|Hii(ω)ΣWiH
∗
ii(ω)|

, (21)

where Hii describes the transfer from Wi to Zi in the
frequency domain and ΣWi

= E[Wi,nW
⊺
i,n]; these measures

quantify the causal (asymmetric) coupling from Z1 to Z2

and vice-versa, and are related to the so-called block directed
coherence [11]. To complete the representation of the pairwise
interactions between Z1 and Z2, a spectral measure fZi •Zj (ω)
can be defined subtracting the sum of the two causal measures
(21) from the coupling measure (20) to get

fZ1 •Z2
(ω) = log

|H11(ω)ΣW1
H∗

11(ω)||H22(ω)ΣW2
H∗

22(ω)|
|SZ(ω)|

,

(22)
so as to satisfy in the frequency domain a decomposition
similar to the time-domain decomposition (10):

fZ1;Z2
(ω) = fZ1→Z2

(ω) + fZ2→Z1
(ω) + fZ1 •Z2

(ω). (23)

Importantly, the spectral measures in (23) are tightly linked to
the similar measures given in the time domain in (10). In fact,
it can be shown (see, e.g., [35]) that integration over the whole
frequency axis of the spectral coupling measure (20) returns,
with proper scaling, the MIR between the two processes, i.e.

IZ1;Z2 =
1

4π

∫ π

−π

fZ1;Z2(ω) dω, (24)

and that the same relation holds integrating fZ1→Z2(ω),
fZ2→Z1(ω) and fZ1 •Z2(ω) to get respectively TZ1→Z2 ,
TZ2→Z1

, and IZ1 •Z2
. This spectral integration property gives

to the measures fZ1;Z2
(ω) and fZj→Zi

(ω) the information-
theoretic meaning of density of information shared between
the two processes, or transferred from one process to the other,
at the angular frequency ω. We note that, while the coupling
measure is always non-negative, the two causal measures can
take negative values at some frequencies if the process Z is
not strictly causal (i.e. if the innovation covariance ΣW is not
block-diagonal). On the contrary, the measure fZ1 •Z2

(ω) can
take negative values even for strictly causal processes [45].

The spectral integration property can be exploited not only
to compute the time-domain measures in (10) as the integral
of the spectral measures in (23), but also to achieve a causal
decomposition of the OIR formulated for spectral functions.

Indeed, it is easy to show that the frequency-specific OIR
increment defined in analogy to (8) as

δXN ;XN−1(ω) = (2−N)fXN ;XN−1(ω) +

N−1∑
i=1

fXN ;XN−1
−i

(ω)

(25)
satisfies the spectral integration property, i.e. ∆XN ;XN−1 =
(1/4π)

∫ π

−π
δXN ;XN−1(ω) dω, and can also be expanded

through a causal decomposition similar to (11) as

δXN ;XN−1(ω) = δXN→XN−1(ω)+δXN−1→XN
(ω)+δXN •XN−1(ω),

(26)
where the three terms on the r.h.s. of (26) are obtained
expanding fXN ;XN−1(ω) and fXN ;XN−1

−i
(ω) in (25) according

to (23). Moreover, the spectral OIR increment (25) can be
used to compute recursively a frequency-domain version of
the OIR, in analogy to (7), as (see Fig. 1b)

νXN (ω) = νXN−1(ω) + δXN ;XN−1(ω), (27)

which again satisfies the spectral integration property, i.e.
ΩXN = (1/4π)

∫ π

−π
νXN (ω) dω.

Therefore, the spectral versions of the HOI measures defined
in this section can be meaningfully interpreted as densities of
the synergistic/redundant character of the information shared
between multiple stochastic processes. To conclude this sec-
tion it is worth noting that, in the case of N = 3 processes,
the spectral OIR (27) is a frequency-domain analogous of the
IIR defined in (9), which can be recovered through whole-band
integration. This measure has been recently defined for triplets
of random processes [17], and also extended to the spectral
computation of separate measures of redundancy and synergy
within the PID framework [7]. As shown in the theoretical
examples of Sect. III and practical applications of Sect. IV,
the evaluation of the spectral IIR of three processes, and more
generally of the spectral OIR of multiple processes, allows
to assess the informational character of specific oscillations
within circuits of nodes of the analyzed network.

III. THEORETICAL EXAMPLES

In this section, the framework for the computation of pair-
wise and higher-order interactions in the time and frequency
domains is illustrated making use of theoretical examples of
simulated multivariate VAR models for which the various mea-
sures are computed directly from the known model parameters.
These simulations are exploited to show how our measures
can be used: (a) to highlight the emergence of patterns of
interaction among groups of processes which cannot be traced
from pairwise connections; (b) to dissect pairwise and higher-
order interactions into causal components which can be related
to the topological structure of the underlying network; (c)
to ascribe interactions to specific oscillations confined within
specific frequency bands; (d) to evidence the presence of
circuits dominated by synergy or redundancy, or even by
simultaneous synergistic and redundant behaviors coexisting
at different frequencies.

Detailed equations and parameter settings are provided in
Section II of the supplemental material, alongside with refer-
ences to the Matlab codes that implement the two simulations.
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A. Simulation 1

The first simulation reproduces the trivariate system pro-
posed in [7], adapted to generate realistic cardiovascular and
respiratory dynamics. The activity of this system is mapped by
a trivariate VAR process defined as in (13) fed by independent
Gaussian innovations, for which the parameters are set as
illustrated in Fig. 2a indicated in Eq. (S10) of the Supplemental
Material. The vector process is studied keeping the three scalar
processes separate (M = Q = 3, X = Y ), and assuming
sampling frequency fs = 1 (spectral functions are described
completely in the frequency range 0−0.5 Hz). The coefficient
matrix A is designed to mimic the dynamics of respiration
(X1), arterial pressure (X2) and heart period (X3) variability,
generating self-dependencies for the processes X1 and X2

through the coefficients a11,k and a22,k, and imposing causal
effects along the directions X1 → X2, X1 → X3 and
X2 → X3 through the coefficients a21,k, a31,k and a32. Self-
dependencies are set to induce oscillations in the respiratory
band (∼ 0.35 Hz) for X1 and in the low-frequency band (∼ 0.1
Hz) for X1 and particularly for X2, while causal effects are
set to realize a high-pass filter from X1 to X2, a low-pass
filter from X1 to X3 and an all-pass configuration from X2

to X3 (spectral transfer functions are shown in Fig. 2a, right);
low- and high-pass filtering are achieved through FIR filters
of order 20 with cut-off frequency of 0.2 Hz.

The application of our framework to the VAR parameters
describing the simulated process leads to the spectral functions
depicted in Fig. 2b,c. The PSD profiles (Fig. 2b, diagonal
plots) highlight oscillations at ∼ 0.1 Hz and ∼ 0.35 Hz
for the three processes. The causal coupling between pairs
of processes (Fig. 2b, off-diagonal plots) evidences the pres-
ence of information flows originating from the first process
(nonzero profiles of fX1→X2

,fX1→X3
and fX2→X3

) and the
absence of information flowing back towards it (fX3→X2

=
fX2→X1

= fX3→X1
= 0 at each frequency). Note that, given

the unidirectional coupling and the absence of instantaneous
interactions, in virtue of (23) the three nonzero causal coupling
measures are equivalent to the spectral measures of total
coupling fX1;X2

, fX1;X3
and fX2;X3

(red curves in Fig. 2b);
whole-band integration of such measures by (24) leads to
the MIR quantifying the total information shared between
pairs of processes, whose values result IX1;X2 = TX1→X2 =
0.28 nats, IX1;X3

= TX1→X3
= 0.05 nats and IX2;X3

=
TX2→X3

= 0.24 nats. Then, computation of the MIR between
one process and the remaining two leads to obtain the OIR
via (8), which for this simulation is ΩX1;X2;X3 = 0.019
nats, denoting a small redundant interaction among the three
processes. Importantly, the spectral expansion (Fig. 2c) reveals
that this small OIR value is the balance between a synergistic
interaction at low frequencies (ΩX1;X2;X3

= −0.15 nats in the
band 0.04 − 0.12 Hz) and a redundant interaction at higher
frequencies (ΩX1;X2;X3 = +0.33 nats in the band 0.31−0.39
Hz). We also highlight that the causal decomposition of the
OIR νX1;X2;X3

= δX1;X2,X3
reveals the unidirectional nature

of the OIR increment (i.e., δX1;X2,X3
= δX1→X2,X3

and
δX2,X3→X1

= δX1 •X2,X3 = 0). The opposite OIR values
observed in the two frequency bands can be explained by the
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Fig. 2. Theoretical simulation of cardiovascular interactions. (a) Connectivity
structure of the simulated VAR process (left) and of its spectral transfer
functions (right); (b) power spectral density of the three processes (diagonal)
and components of the causal decomposition of the spectral coupling between
each pair of processes (off-diagonal); (c) spectral profiles of the O-information
rate of the three processes and of the components of its causal decomposition.

simulation design (see Fig. 2a): synergy and redundancy arise
respectively because the flow of information from X1 to X3

is entirely mediated by X2 at the respiratory frequency (the
path X1 → X3 is blocked by H31 at ∼ 0.35 Hz), and because
such flow occurs via the independent paths X1 → X3 and
X2 → X3 at lower frequencies (the path X1 → X2 is blocked
by H21 at ∼ 0.1 Hz).

B. Simulation 2

The second simulation illustrates the possibility offered
by our framework to quantify higher-order spectral interac-
tions among multiple blocks of processes whose dynamics
resemble those of neurophyiological signals. The simulation
extends previous simulations of VAR processes [11], [17] to
the analysis of Q = 10 processes organized in M = 5
blocks, with connectivity structure organized as in Fig. 3a;
equations and parameter setting are given in Eq. (S11) of
the Supplemental Material. The network is designed to sim-
ulate three autonomous vector processes X1, X2 and X3

which generate, through their own subnetwork interactions,
a stochastic oscillation resembling the brain α rhythm (∼ 10
Hz) which is transmitted to the central node X4; such node is
a sink for the α waves but also acts as a source of oscillatory
activity in the β band (∼ 25 Hz), which is transmitted back
to X1 through the passive block X5. The presence of the two
simulated rhythms and their transmission through the network
is documented by the power spectra SXi and by the pairwise
coupling measures fXi;Xj

reported respectively in red and
gray in Fig. 3b; integration of the coupling measures leads to
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Fig. 3. Theoretical simulation of neurophysiological interactions. (a) Connectivity structure of the simulated VAR process, featuring 10 scalar processes
grouped in 5 blocks; (b) power spectral densities (red) and spectral coupling functions (gray) between each pair of block processes; (c) spectral profiles of
the O-information rate computed for multiplets of three (left), four (middle) and five (right) block processes; (d) time-domain O-information rate obtained
integrating the spectral measure relevant to each multiplet over the whole frequency axis (left bars), inside the α band (8-12 Hz, middle bars), or inside the
β band (18-30 Hz, right bars).

detect significant MIR values between each pair of processes
except X2 and X3.

The analysis of higher-order interactions was performed
computing the spectral OIR for all multiplets of order N =
3, 4, 5 (Fig. 3c) as well as the corresponding time-domain OIR
values obtained integrating the spectral measures over all fre-
quencies or within the α (8-12 Hz) or β (18-30 Hz) bands (Fig.
3d). This analysis allows to evidence patterns of interaction
which cannot be inferred from lower-order pairwise links. In
particular, the presence of independent sources sending in-
formation to a common target originates synergistic modes of
interaction characterized by negative profiles of the OIR; this is
the case for the multiplets including two or three of the source
processes X1, X2, X3 and one between X4 and X5 (e.g.,
νX1,X2,X4

and νX1,X2,X3,X4
, red and violet negative OIRs

in Fig. 3c). On the contrary, chains of interactions including
three or more block processes determine redundant modes of
dependence characterized by positive OIR values; this occurs
when one or two of the sources X1, X2, X3 and both the driven
processes X4 and X5 are included in the analyzed multiplet
(e.g., νX1,X4,X5

and νX1,X2,X4,X5
, green and cyan positive

OIRs in Fig. 3c). We note also that the OIR is uniformly null
for the triplet with independent processes {X1, X2, X3} (gray
line in Fig. 3c, left panel). The computation of the time-domain
OIR puts in evidence the purely synergistic or redundant nature
of the interactions occurring within the multiplets of order

3 and 4, as documented in Fig. 3d by the clearly negative
or positive values of the OIRs. Interestingly, the integration
within a specific frequency band (α or β) leads to infer which
is the rhythm mostly associated with the interactions, which
in this simulation occur dominantly in the α band for the
synergistic modes with negative OIR, and in both bands with
prevalence of β for the redundant modes with positive OIR.

The analysis of the highest-order multiplet incorporating all
processes puts clearly in evidence that synergy and redundancy
are related to the simulated α and β rhythms, respectively.
Indeed, the spectral OIR νX5 displays a negative peak at ∼ 10
Hz and a positive peak at ∼ 25 Hz (Fig. 3c, right panel),
and the integration of this spectral function within the α and
β bands evidences clearly negative and positive values (grey
bars at the right of Fig. 3d). This mode is an example of
how the coexistence of synergy and redundancy at different
frequencies may mask their time domain detection, as in this
case the whole-band integration of the spectral OIR gives small
negative values which could be difficult to assess in practice.

IV. APPLICATION TO PHYSIOLOGICAL NETWORKS

This section reports the application of the framework for
the analysis of multivariate interactions in the time and
frequency domain to two different physiological networks,
i.e. cardiovascular and respiratory interactions during paced
breathing, and neural interactions from ECoG signals in the
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anesthetized macaque monkey. Full details about the analyzed
datasets and additional results are provided in Section III of
the supplemental material.

A. Cardiovascular and respiratory interactions during paced
breathing

The analyzed dataset refers to beat-to-beat variability series
of respiration (RESP, process X1), systolic arterial pressure
(SAP, process X2) and heart period (HP, processX3), syn-
chronously measured in a group of 18 young healthy subjects
monitored in the resting supine position during an experimen-
tal protocol consisting of four phases: spontaneous breathing
(SB) and controlled breathing at 10, 15, and 20 breaths/minute
(CB10, CB15, CB20) [15]. The HP, SAP and RESP time
series were extracted respectively from the electrocardiogram,
noninvasive arterial blood pressure and nasal respiration flow
as the sequences of the duration of the cardiac cycle (R-
R interval), of the local maximum of the blood pressure
signal within each detected cardiac cycle, and of the value
of the respiration signal sampled at the onset of each cardiac
cycle. This measurement convention implies that instantaneous
influences can be described as causal effects from RESP to
SAP and HP and from SAP to HP (directions X1 → X2,
X1 → X3, X2 → X3) [46].

The analysis was performed on stationary segments of the
time series including 256 heartbeats, selected by visual inspec-
tion for each subject and experimental condition [15]. The pre-
processing consisted on detrending and mean removal for each
time series. The VAR model fitting the three series was iden-
tified through the ordinary least squares method, selecting the
order p in the range 3-14 by means of the Akaike Information
Criterion [36]. The analysis was focused on decomposing the
OIR of the three processes in OIR increments obtained when
the HP process is added to the bivariate process {RESP,SAP}.
Specifically, starting from the estimated VAR parameters, we
computed δX1,X2→X3(f), δX3→X1,X2(f) and δX1,X2 •X3

(f)
from the terms of the spectral decomposition (10), then
deriving νX1,X2,X3(f) = δX1,X2;X3(f) via (13,14). From
these spectral measures, time-domain measures were obtained
through integration over the whole frequency axis or within
the low frequency range (LF, 0.04-0.12 Hz) and the high
frequency range (HF, ±0.04 Hz around the respiratory fre-
quency fRESP ). Given the possibility to ascribe instantaneous
effects to specific causal directions (see above), the analysis
is performed summing the information shared instantaneously
between {RESP,SAP} and HP to the information transferred
from {RESP,SAP} to HP, i.e. computing the spectral and
time domain measures δX1,X2

.→X3
(f) = δX1,X2→X3(f) +

δX1,X2 •X3(f) and ∆X1,X2
.→X3

= ∆X1,X2→X3 +∆X1,X2 •X3 .
The results of OIR computation and decomposition are

reported in Fig. 4, showing the grand average of the frequency-
domain measures as well as the whole-band, LF and HF time-
domain average measures. Spectral analysis was performed
assuming the series as uniformly sampled with sampling
frequency equal to the inverse of the mean HP. The spectral
OIR and most of the terms of its decomposition exhibit
prominent peaks, which are well-defined at the frequency of
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Fig. 4. OIR decomposition of cardiovascular interactions during controlled
breathing (CB). (a) Average spectral profiles across subjects (line: median;
shades: 1st-3rd quartiles) of the OIR increment obtained with the addition
of HP to {SAP,RESP} (upper panels) and of its decomposition in causal
terms (middle and lower panels) computed during spontaneous breathing
(SB) and CB at 10, 15 and 20 breaths/min. (b) Time-domain values of
the mean OIR increments obtained integrating the spectral measures over
the whole frequency axis (TOT), in the range 0.04-0.12 Hz (LF) or in
the range fRESP ± 0.04 Hz (HF); asterisks denote statistically significant
difference between the CB condition compared with SB (Wilcoxon signed-
rank test: black, uncorrected; red, Bonferroni-Holm correction for multiple
comparisons).

the paced breathing during the CB conditions and are less
narrow-banded during SB (Fig. 4a). This behavior reflects the
fact that paced breathing regularizes the RESP signal around
the imposed rhythm and enforces synchronous oscillations
at the same frequency in the HP and SAP time series,
determining increased spectral content and spectral coupling
in the HF band [15]. The positive values of the time-domain
OIR (Fig. 4b, left) document that this synchronized interaction
is dominantly redundant, confirming previous findings [29].
Looking at the spectral profiles of Fig. 4a, the peak values
of the OIR show a tendency to increase while moving from
SB to CB10, and to decrease progressively during CB15 and
CB20; these trends confirm from the perspective of HOIs
results obtained on the same data using information-theoretic
measures of cardiorespiratory coupling [20]. The dominance
of redundancy in the HF band of the spectrum (Fig. 4b, right)
suggests that the main underlying physiological mechanism
is the mechanical influence of RESP on SAP variability,
transmitted to HP through the baroreflex feedback [47]; the
OIR component directed from HP to {SAP,RESP}, which
tends to be less redundant at increasing the frequency of
paced breathing, is of more difficult interpretation and is likely
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dominated by the mechanical feedforward effects from HP to
SAP [21]. The dominance of redundant mechanisms around
the respiratory frequency impacts substantially the whole-band
time-domain OIR, which show comparable values across the
analyzed conditions (Fig. 4b, left). On the other hand, the mea-
sures integrated within the LF band vary significantly moving
from spontaneous to paced breathing (Fig. 4b, middle): the
information transfer from {SAP,RESP} to HP becomes mostly
synergistic during CB10, and during CB15 and CB20 returns
progressively to the redundant values observed at SB; the
information transfer along the direction HP→ {SAP,RESP}
is prevalently synergistic at rest and shifts to redundant val-
ues during CB. The shift to synergy observed at CB10 for
∆X1,X2→X3 suggests that, when the respiratory activity slows
down and tends to overlap with the Mayer waves typically
observed in SAP and HP [48], the baroreflex (SAP→HP) and
respiratory sinus arrhythmia (RESP→HP) mechanisms operate
independently in determining the variability of heart rate.

B. Neural interactions from ECoG signals in the anesthetized
macaque monkey

The second practical application refers to monkey electro-
corticographic (ECoG) signals downloaded from the public
server neurotycho.org. The analyzed dataset was recorded with
a sampling frequency of 1000 Hz in one macaque monkey
using 128 electrodes, placed in pairs with an inter-electrode
distance of 5 mm to cover the frontal, parietal, temporal and
occipital lobes of the left hemisphere [18]. Specifically, we
considered two five-minutes recording sessions during which
the blindfolded monkey was seated in a primate chair with tied
hands, first in a resting state (REST) and then after injection
of a sedative inducing anesthesia (ANES). From the 128
electrodes, a subset of 20 was selected as depicted in Figure
5a to cover, considering ten bipolar ECoG signals obtained
taking the differential activity between close electrodes, the
following five brain regions of the default mode network, i.e.
the pre-frontal cortex (X1 = [Y1, Y2]), parietal cortex (X2 =
[Y3, Y4]), temporal cortex (X3 = [Y5, Y6]), low visual cortex
(X4 = [Y7, Y8]), and high visual cortex (X5 = [Y9, Y10]). The
ten bipolar signals were band-pass filtered between 0.5 and
200 Hz, downsampled to fs = 250 Hz, epoched to extract
∼ 160 trials lasting 2 sec for each condition, and finally
normalized to zero mean and unit variance within each trial.
Then, a VAR model was fitted on the Q = 10 signals of each
trial using least squares identification and setting the model
order according to the Bayesian Information Criterion (BIC)
[36]. From the VAR parameters, the analysis of high-order
interactions was performed for the M = 5 blocks computing
the spectral OIR for all multiplets of order N = 3, 4, 5. Time-
domain OIR values (Ω) were then obtained integrating the
spectral measures ν(f) within the δ (0.2-3 Hz), θ (4-7 Hz), α
(8-12 Hz), β (12-30 Hz) and γ (31-70 Hz) frequency bands,
as well as cumulatively between 0 and 70 Hz.

The results of OIR computation are reported in Fig. 5b,
showing the grand average of the spectral OIR for five multi-
plets selected as the most representative of the analyzed inter-
actions, together with the time-domain OIR obtained through
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Fig. 5. OIR analysis of neurophysiological interactions in the anesthetized
monkey. (a) ECoG electrode montage highlighting the positions of the selected
electrodes acquiring the bipolar signals Y1, . . . , Y10 grouped in the blocks
X1, . . . , X5 covering five regions of the left hemisphere. (b) Average spectral
profiles across trials (line: median; shades: 1st-3rd quartiles) of the OIR
computed for five representative multiplets during relaxation (REST) and
anesthesia (ANES). (c) Time-domain values of the mean OIR obtained by
integrating the spectral measures over the whole frequency axis (T) or within
the δ, θ, α, β and γ bands; asterisks denote statistically significant difference
between REST and ANES (Wilcoxon signed-rank test with Bonferroni cor-
rection for multiple comparisons ).

whole-band and band-specific integration. The positive values
of the OIR functions and of the integrated measures, observed
for all multiplets in both conditions and increasing with the
order of the multiplet, indicate that the analyzed system is
dominated by redundancy. Moreover, the redundancy level is
modulated by the experimental condition to an extent that
depends on the analyzed multiplet and spectral band. Indeed,
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considering the multiplets of order 3 and 4 which involve the
prefrontal cortex X1 (1st and 3rd row of panels in Fig. 5b),
a significant increase of the OIR is observed while moving
from REST to ANES; such increase is driven by the rise
of a peak in the OIR at ∼ 2 Hz (δ band) together with an
increased contribution within the γ band. On the other hand,
the multiplets formed by signals from the parietal, temporal
and visual cortices (2nd and 4th row of panels in Fig. 5b)
display a drop of redundancy in the α and β bands during
ANES compared to REST. These two opposite behaviors
are summarized by the OIR encompassing all five regions
(5th row of panels in Fig. 5b), which during ANES displays
significantly higher levels of redundancy in the δ and γ bands
(and in the whole band), and significantly lower redundancy
in the θ, α, and β bands.

Our results indicate that the activity relevant to the α and
β rhythms observed during the relaxed awake state disap-
pears during anesthesia, leaving place to dominant interactions
within the δ and γ bands. The redundancy observed at REST
for the α waves is significant for the multiplets involving
signals from the visual cortex, in agreement with the knowl-
edge that these waves can be predominantly recorded from
the occipital lobes during wakeful relaxation with closed eyes
[49]. On the other hand, the higher redundancy reported in
the δ band can be related to the slow wave oscillations (0.1-4
Hz) typically observed under anesthesia [50]. Moreover, the
fact that higher δ redundancy is observed only for multiplets
including frontal cortex signals supports the knowledge that
the slow oscillations are a manifestation of a coupling between
the anterior and posterior axes of the brain [51]. Anesthesia
evokes also an increase of redundancy related to γ oscillations,
which are associated with different cognitive functions [52].

Overall, these results agree with those in [18] and support
the integration theory according to which the conscious state
is generated by highly integrated neural interactions that
disappear in the unconscious state [53]. A recent study com-
paring resting wakefulness with propofol-induced anaesthesia
in human fMRI data has shown how the anterior-posterior
disconnection occurring during anesthesia is associated with a
decrease of Integrated Information within the default mode
network in the left hemisphere [54]. Importantly, the con-
cepts of Integration Information and that of redundancy are
interrelated, as explained in [55] where it is highlighted that
a drop of Integrated Information corresponds to an increase
of redundancy. Thus, our results support the theory of an
anterior-posterior disconnection during anesthesia, which in
our case can be ascribed to the significant increase of the
OIR documented when the frontal cortex is considered in the
analyzed multiplet.

V. CONCLUSION

This work opens the way to the combined information-
theoretic and spectral evaluation of hierarchically-organized
interactions in dynamic networks mapped by multivariate
stochastic processes. The proposed framework is highly flex-
ible and scalable as it provides principled measures of both
pairwise and higher-order interactions among scalar or vector

processes, defined in both time and frequency domains in
a way such that the two representations are connected in a
straightforward way. Moreover, it allows to decompose sym-
metric measures into components reflecting Granger-causal
and instantaneous influences, and to estimate them with high
computational reliability within the framework of vector au-
toregressive and state space (SS) models.

The application of the new framework to biomedical time
series illustrates its capability to capture the balance between
redundancies and synergies among arbitrarily large groups
of nodes of brain and physiological networks. Moreover, it
highlights the importance of studying these features within
specific frequency bands of biological interest to elicit in-
teractions which may be otherwise hidden if investigated
only in the time domain. The generality of the information-
theoretic grounds and of the parametric implementation of
the proposed approach makes it suitable for the assessment
of pairwise and higher-order interactions even beyond the
domain of biomedical time series, to analyze virtually any type
of dynamic network (e.g., electronic, climatologic, social, or
financial) with node activity described by rhythmic processes.
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