8,253 research outputs found

    Proposing "b-Parity" - a New Approximate Quantum Number in Inclusive b-jet Production - as an Efficient Probe of New Flavor Physics

    Full text link
    We consider the inclusive reaction \ell^+ \ell^- -> nb +X (n = number of b-jets) in lepton colliders for which we propose a useful approximately conserved quantum number b_P=(-1)^n that we call b-Parity (b_P). We make the observation that the Standard Model (SM) is essentially b_P-even since SM b_P-violating signals are necessarily CKM suppressed. In contrast new flavor physics can produce b_P=-1 signals whose only significant SM background is due to b-jet misidentification. Thus, we show that b-jet counting, which relies primarily on b-tagging, becomes a very simple and sensitive probe of new flavor physics (i.e., of b_P-violation).Comment: 5 pages using revtex, 2 figures embadded in the text using epsfig. As will appear in Phys.Rev.Lett.. Considerable improvement was made in the background calculation as compared to version 1, by including purity parameters, QCD effects and 4-jets processe

    Development of flying qualities criteria for single pilot instrument flight operations

    Get PDF
    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed

    A study of the Hartree-Fock model space for light deformed nuclei

    Get PDF
    Effects of altering truncated basis space used in Hartree Fock model for light deformed nucle

    Group Testing Models with Processing Times and Incomplete Identification

    Get PDF
    We consider the group testing problem for a finite population of possibly defective items with the objective of sampling a prespecified demanded number of nondefective items at minimum cost.Group testing means that items can be pooled and tested together; if the group comes out clean, all items in it are nondefective, while a "contaminated" group is scrapped.Every test takes a random amount of time and a given deadline has to be met.If the prescribed number of nondefective items is not reached, the demand has to be satisfied at a higher (penalty) cost.We derive explicit formulas for the distributions underlying the cost functionals of this model.It is shown in numerical examples that these results can be used to determine the optimal group size.testing;sampling

    Dynamic Windows Scheduling with Reallocation

    Full text link
    We consider the Windows Scheduling problem. The problem is a restricted version of Unit-Fractions Bin Packing, and it is also called Inventory Replenishment in the context of Supply Chain. In brief, the problem is to schedule the use of communication channels to clients. Each client ci is characterized by an active cycle and a window wi. During the period of time that any given client ci is active, there must be at least one transmission from ci scheduled in any wi consecutive time slots, but at most one transmission can be carried out in each channel per time slot. The goal is to minimize the number of channels used. We extend previous online models, where decisions are permanent, assuming that clients may be reallocated at some cost. We assume that such cost is a constant amount paid per reallocation. That is, we aim to minimize also the number of reallocations. We present three online reallocation algorithms for Windows Scheduling. We evaluate experimentally these protocols showing that, in practice, all three achieve constant amortized reallocations with close to optimal channel usage. Our simulations also expose interesting trade-offs between reallocations and channel usage. We introduce a new objective function for WS with reallocations, that can be also applied to models where reallocations are not possible. We analyze this metric for one of the algorithms which, to the best of our knowledge, is the first online WS protocol with theoretical guarantees that applies to scenarios where clients may leave and the analysis is against current load rather than peak load. Using previous results, we also observe bounds on channel usage for one of the algorithms.Comment: 6 figure

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    Disorder and Funneling Effects on Exciton Migration in Tree-Like Dendrimers

    Full text link
    The center-bound excitonic diffusion on dendrimers subjected to several types of non-homogeneous funneling potentials, is considered. We first study the mean-first passage time (MFPT) for diffusion in a linear potential with different types of correlated and uncorrelated random perturbations. Increasing the funneling force, there is a transition from a phase in which the MFPT grows exponentially with the number of generations gg, to one in which it does so linearly. Overall the disorder slows down the diffusion, but the effect is much more pronounced in the exponential compared to the linear phase. When the disorder gives rise to uncorrelated random forces there is, in addition, a transition as the temperature TT is lowered. This is a transition from a high-TT regime in which all paths contribute to the MFPT to a low-TT regime in which only a few of them do. We further explore the funneling within a realistic non-linear potential for extended dendrimers in which the dependence of the lowest excitonic energy level on the segment length was derived using the Time-Dependent Hatree-Fock approximation. Under this potential the MFPT grows initially linearly with gg but crosses-over, beyond a molecular-specific and TT-dependent optimal size, to an exponential increase. Finally we consider geometrical disorder in the form of a small concentration of long connections as in the {\it small world} model. Beyond a critical concentration of connections the MFPT decreases significantly and it changes to a power-law or to a logarithmic scaling with gg, depending on the strength of the funneling force.Comment: 13 pages, 9 figure

    Phase transition in the bounded one-dimensional multitrap system

    Full text link
    We have previously discussed the diffusion limited problem of the bounded one-dimensional multitrap system where no external fiel is included and pay special attention to the transmission of the diffusing particles through the system of imperfect traps. We discuss here the case in which an external field is included to each trap and find not only the transmission but also the energy associated with the diffusing particles in the presence and absence of such fields. From the energy we find the specific heat ChC_h and show that for certain values of the parameters associated with the multitrap system it behaves in a manner which is suggestive of phase transition. Moreover, this phase transition is demonstrated not only through the conventional single peak at which the specific heat function is undifferentiable but also through the less frequent phenomenon of double peaks.Comment: 25 pages, 6 PS Figures, there have been introduced many changes including the remove of two figure
    corecore