10,467 research outputs found

    The evaluation of the rolling moments induced by wraparound fins

    Get PDF
    A possible reason is suggested for the induced rolling moments occurring on wraparound-fin configurations in subsonic flight at zero angle of attack. The subsonic potential flow over the configuration at zero incidence is solved numerically. The body is simulated by a distribution of sources along its axis, and the fins are described by a vortex-lattice method. It is shown that rolling moments can be induced on the antisymmetric fins by the radial flow generated at the base of the configuration, either over the converging separated wake, or over the diverging plume of a rocket motor

    Macroscopic loop formation in circular DNA denaturation

    Full text link
    The statistical mechanics of DNA denaturation under fixed linking number is qualitatively different from that of the unconstrained DNA. Quantitatively different melting scenarios are reached from two alternative assumptions, namely, that the denatured loops are formed in expense of 1) overtwist, 2) supercoils. Recent work has shown that the supercoiling mechanism results in a BEC-like picture where a macroscopic loop appears at Tc and grows steadily with temperature, while the nature of the denatured phase for the overtwisting case has not been studied. By extending an earlier result, we show here that a macroscopic loop appears in the overtwisting scenario as well. We calculate its size as a function of temperature and show that the fraction of the total sum of microscopic loops decreases above Tc, with a cusp at the critical point.Comment: 5 pages, 3 figures, submitted for publicatio

    Quantum random walks without walking

    Full text link
    Quantum random walks have received much interest due to their non-intuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a BEC trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.Comment: 12 manuscript pages, 3 figure

    From metropolis to metropolis-based region: the case of Tel-Aviv

    Get PDF
    The decreasing importance of metropolitan areas in the distribution of population and economic activity within many nations of the developed world raises questions about the emergence of agglomeration diseconomies and about the changes in urban spatial structure. Here we explore the thesis that an emerging metropolitan area based region (MBR), comprising the metropolis and a surrounding territory, is gradually replacing the metropolis. Using data covering the last 22 years for the metropolis of Tel-Aviv (Israel) and its surrounding territory, various indicators are estimated. These include national and regional deconcentration (both measured in terms of population and employment), as well as centrality, dependence, attractiveness and integration (measured in terms of employment). The main results of the analysis include the following: the need to view metropolitan stagnation and deconcentration within the wider context of the MBR; employment deconcentration occurring at a slower rate than population deconcentration, leading to increasing levels of employment centrality within the MBR; the process of consolidation within the MBR and a strengthening of its economic role within the nation.

    Development of flying qualities criteria for single pilot instrument flight operations

    Get PDF
    Flying qualities criteria for Single Pilot Instrument Flight Rule (SPIFR) operations were investigated. The ARA aircraft was modified and adapted for SPIFR operations. Aircraft configurations to be flight-tested were chosen and matched on the ARA in-flight simulator, implementing modern control theory algorithms. Mission planning and experimental matrix design were completed. Microprocessor software for the onboard data acquisition system was debugged and flight-tested. Flight-path reconstruction procedure and the associated FORTRAN program were developed. Algorithms associated with the statistical analysis of flight test results and the SPIFR flying qualities criteria deduction are discussed

    Fast Structuring of Radio Networks for Multi-Message Communications

    Full text link
    We introduce collision free layerings as a powerful way to structure radio networks. These layerings can replace hard-to-compute BFS-trees in many contexts while having an efficient randomized distributed construction. We demonstrate their versatility by using them to provide near optimal distributed algorithms for several multi-message communication primitives. Designing efficient communication primitives for radio networks has a rich history that began 25 years ago when Bar-Yehuda et al. introduced fast randomized algorithms for broadcasting and for constructing BFS-trees. Their BFS-tree construction time was O(Dlog2n)O(D \log^2 n) rounds, where DD is the network diameter and nn is the number of nodes. Since then, the complexity of a broadcast has been resolved to be TBC=Θ(DlognD+log2n)T_{BC} = \Theta(D \log \frac{n}{D} + \log^2 n) rounds. On the other hand, BFS-trees have been used as a crucial building block for many communication primitives and their construction time remained a bottleneck for these primitives. We introduce collision free layerings that can be used in place of BFS-trees and we give a randomized construction of these layerings that runs in nearly broadcast time, that is, w.h.p. in TLay=O(DlognD+log2+ϵn)T_{Lay} = O(D \log \frac{n}{D} + \log^{2+\epsilon} n) rounds for any constant ϵ>0\epsilon>0. We then use these layerings to obtain: (1) A randomized algorithm for gathering kk messages running w.h.p. in O(TLay+k)O(T_{Lay} + k) rounds. (2) A randomized kk-message broadcast algorithm running w.h.p. in O(TLay+klogn)O(T_{Lay} + k \log n) rounds. These algorithms are optimal up to the small difference in the additive poly-logarithmic term between TBCT_{BC} and TLayT_{Lay}. Moreover, they imply the first optimal O(nlogn)O(n \log n) round randomized gossip algorithm

    Yacimiento paleolítico en el valle de Refaim, Jerusalén, Israel

    Get PDF

    Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals

    Full text link
    Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce, Eu and Yb-based compounds. EuNi2_2P2_{2} is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instead of approaching an integer value. Eu valence and thus the magnetic property in this system can be tuned by Ge substitution in P site as EuNi2_2Ge2_{2} is known to exhibit antiferromagnetc (AFM) ordering of divalent Eu moments with TNT_N = 30 K. We have grown EuNi2_2(P1x_{1-x}Gex_x)2_2 (0.0 \leq xx \leq 0.5) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to x>x > 0.4 results in a well-defined AFM ordered state with TNT_N = 12 K for xx = 0.5. Moreover, the reduced value of magnetic entropy for xx = 0.5 at TNT_N suggests the presence of valance fluctuation/ Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi2_2P2_{2} but a stable divalent Eu state in EuNi2_2Ge2_{2} which is in good agreement with experimental results.Comment: 7 pages, 8 figure
    corecore