2,422 research outputs found

    A coproduct structure on the formal affine Demazure algebra

    Full text link
    In the present paper we generalize the coproduct structure on nil Hecke rings introduced and studied by Kostant-Kumar to the context of an arbitrary algebraic oriented cohomology theory and its associated formal group law. We then construct an algebraic model of the T-equivariant oriented cohomology of the variety of complete flags.Comment: 28 pages; minor revision of the previous versio

    Diamagnetism of quantum gases with singular potentials

    Full text link
    We consider a gas of quasi-free quantum particles confined to a finite box, subjected to singular magnetic and electric fields. We prove in great generality that the finite volume grand-canonical pressure is jointly analytic in the chemical potential ant the intensity of the external magnetic field. We also discuss the thermodynamic limit

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Proteomic and functional analyses of the virion transmembrane proteome of cyprinid herpesvirus 3

    Get PDF
    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (ORF32, ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are non-essential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the non-essential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro, and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25 deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro; (iii) seven of the non-essential proteins affect viral growth in vitro, and two affect virulence in vivo; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins

    Automatic Filters for the Detection of Coherent Structure in Spatiotemporal Systems

    Full text link
    Most current methods for identifying coherent structures in spatially-extended systems rely on prior information about the form which those structures take. Here we present two new approaches to automatically filter the changing configurations of spatial dynamical systems and extract coherent structures. One, local sensitivity filtering, is a modification of the local Lyapunov exponent approach suitable to cellular automata and other discrete spatial systems. The other, local statistical complexity filtering, calculates the amount of information needed for optimal prediction of the system's behavior in the vicinity of a given point. By examining the changing spatiotemporal distributions of these quantities, we can find the coherent structures in a variety of pattern-forming cellular automata, without needing to guess or postulate the form of that structure. We apply both filters to elementary and cyclical cellular automata (ECA and CCA) and find that they readily identify particles, domains and other more complicated structures. We compare the results from ECA with earlier ones based upon the theory of formal languages, and the results from CCA with a more traditional approach based on an order parameter and free energy. While sensitivity and statistical complexity are equally adept at uncovering structure, they are based on different system properties (dynamical and probabilistic, respectively), and provide complementary information.Comment: 16 pages, 21 figures. Figures considerably compressed to fit arxiv requirements; write first author for higher-resolution version

    Casimir Torques between Anisotropic Boundaries in Nematic Liquid Crystals

    Full text link
    Fluctuation-induced interactions between anisotropic objects immersed in a nematic liquid crystal are shown to depend on the relative orientation of these objects. The resulting long-range ``Casimir'' torques are explicitely calculated for a simple geometry where elastic effects are absent. Our study generalizes previous discussions restricted to the case of isotropic walls, and leads to new proposals for experimental tests of Casimir forces and torques in nematics.Comment: 4 pages, 1 figur

    A versatile and reproducible cryo-sample preparation methodology for atom probe studies

    Full text link
    Repeatable and reliable site-specific preparation of specimens for atom probe tomography (APT) at cryogenic temperatures has proven challenging. A generalized workflow is required for cryogenic-specimen preparation including lift-out via focused-ion beam and in-situ deposition of capping layers, to strengthen specimens that will be exposed to high electric field and stresses during field evaporation in APT, and protect them from environment during transfer into the atom probe. Here, we build on existing protocols, and showcase preparation and analysis of a variety of metals, oxides and supported frozen liquids and battery materials. We demonstrate reliable in-situ deposition of a metallic capping layer that significantly improve the atom probe data quality for challenging material systems, particularly battery cathode materials which are subjected to delithiation during the atom probe analysis itself. Our workflow designed is versatile and transferable widely to other instruments

    Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size

    Full text link
    We identify a class of composite membranes: fluid bilayers coupled to an elastic meshwork, that are such that the meshwork's energy is a function Fel[Aξ]F_\mathrm{el}[A_\xi] \textit{not} of the real microscopic membrane area AA, but of a \textit{smoothed} membrane's area AξA_\xi, which corresponds to the area of the membrane coarse-grained at the mesh size ξ\xi. We show that the meshwork modifies the membrane tension σ\sigma both below and above the scale ξ\xi, inducing a tension-jump Δσ=dFel/dAξ\Delta\sigma=dF_\mathrm{el}/dA_\xi. The predictions of our model account for the fluctuation spectrum of red blood cells membranes coupled to their cytoskeleton. Our results indicate that the cytoskeleton might be under extensional stress, which would provide a means to regulate available membrane area. We also predict an observable tension jump for membranes decorated with polymer "brushes"

    Selective probing of hidden spin-polarized states in inversion-symmetric bulk MoS2{\mathrm{MoS}}_{2}

    Get PDF
    Spin- and angle-resolved photoemission spectroscopy is used to reveal that a large spin polarization is observable in the bulk centrosymmetric transition metal dichalcogenide MoS2. It is found that the measured spin polarization can be reversed by changing the handedness of incident circularly polarized light. Calculations based on a three-step model of photoemission show that the valley and layer-locked spin- polarized electronic states can be selectively addressed by circularly polarized light, therefore providing a novel route to probe these hidden spin-polarized states in inversion-symmetric systems as predicted by Zhang et al. [Nat. Phys. 10, 387 (2014).]
    • …
    corecore