137 research outputs found

    PRUNE1: a disease-causing gene for secondary microcephaly

    Get PDF
    In their Letter to the Editor, Karakaya et al. (2017) present an interesting case report describing the clinical course involving secondary microcephaly of a 3-year-old Turkish boy found to be homozygous for a frameshift mutation in PRUNE1 identified through whole exome sequencing. The child presented with congenital hypotonia, contractures and global developmental delay with respiratory insufficiency and seizures developing in the first year of life. The authors note that the affected child’s head circumference plotted on the 75th centile at birth, and that by 38 months of age he had developed microcephaly. Neuroimaging at 14 months revealed cerebral and cerebellar atrophy consistent with other patients described with Prune syndrome (Karaca et al., 2015; Costain et al., 2017; Zollo et al., 2017). Although the child had abnormal neurology from birth, there was a period of early developmental regression. Peripheral spasticity in the lower extremities and optic atrophy were not documented until 38 months. In addition to the PRUNE1 variant, Karakaya et al. also identified a second homozygous variant in the CCDC14 gene in the Turkish child’s whole exome sequencing data that, while listed to have an allele count of 108 in the current Genome Aggregation Database (gnomAD) release, is notably absent in homozygous fashion (Lek et al., 2016). CCDC14 is known to be expressed in human brain, reported to negatively regulate centriole duplication and interact with proteins previously associated with primary microcephaly (Firat-Karalar et al., 2014). Thus, while it seems likely that the homozygous PRUNE1 variant is primarily responsible for the clinical presentation in the Turkish child, it is impossible to determine whether there may be any phenotypical contribution from this additional homozygous sequence variant. Recently, Costain et al. (2017) described a homozygous consensus splice site variant in PRUNE1 (c.521-2A4G; NM_021222.1) in a 2-year-old Oji-Cre male who presented with congenital hypotonia and talipes, whose head circumference was large at birth ( +3 standard deviations), but by 2 years and 2 months plotted on the 50th centile, with a weight and height on the 95th and 75th centiles, respectively. However, it should be noted that the child’s father is macrocephalic ( +4 standard deviations), the published clinical photographs at 2 years 5 months of age illustrate bitemporal narrowing, a sloping forehead and large ears, consistent with a developing microcephaly, and neuroimaging revealed cortical and cerebellar atrophy. He developed respiratory insufficiency shortly after birth, and infantile spasms in the first year of life (Costain et al., 2017). It remains to be determined how the phenotypical outcomes stemming from proposed loss-of-function mutations defined by Karakaya et al. and Costain et al., relate to missense mutations published by Karaca et al. and also Zollo et al., which are likely to involve at least partial gain-of-function outcomes in PRUNE1 activity. However, as more cases are investigated and published, the phenotype associated with autosomal recessive Prune neurodevelopmental disorder, and the functional outcomes of PRUNE1 mutation, are becoming clearer. It is now apparent that while some patients have a small head at birth and others a head circumference in the normal range, the key component of the microcephaly is that it is progressive, and associated with characteristic neuroimaging findings with a thin or hypoplastic corpus callosum and cortical and cerebellar atrophy developing in early childhood. Although all patients with Prune syndrome described to date are neurologically impaired from birth, there also appears to be a neurodegenerative component with progression of the disorder. In our manuscript, we described clinical overlap of Prune syndrome with the neurodegenerative condition associated with homozygous mutations in TBCD (Zollo et al., 2017). TBCD encodes one of the five tubulin-specific chaperones that are required for a/b-tubulin de novo heterodimer formation and the disorder is characterized by developmental regression, seizures, optic atrophy and secondary microcephaly, cortical atrophy with delayed myelination, cerebellar atrophy and thinned corpus callosum (Edvardson et al., 2016; Flex et al., 2016; Miyake et al., 2016; Pode-Shakked et al., 2017). The neurodegenerative phenotype documented in the Turkish child by Karakaya et al. further demonstrates the similarities with the TBCD disorder and Prune syndrome, and confirms optic atrophy to be a feature of Prune syndrome. Interestingly, it is also becoming clear that respiratory insufficiency is a common feature of Prune syndrome, having been documented by Karakaya et al. and in the Oji-Cre child, as well as the youngest affected Omani child described in our manuscript

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.This article is freely available via Open Access. Click on the publisher URL to access it via the publisher's site.G1002279/MRC_/Medical Research Council/United Kingdom R25 NS065729/NS/NINDS NIH HHS/United States Z01 AG000949/ImNIH/Intramural NIH HHS/United States R01 NS062869/NS/NINDS NIH HHS/United States F31 NS105404/NS/NINDS NIH HHS/United Statespre-print, post-print, publisher's version/PD

    Unraveling the CLCC1 interactome: Impact of the Asp25Glu variant and its interaction with SigmaR1 at the Mitochondrial-Associated ER Membrane (MAM).

    Get PDF
    The endoplasmic reticulum (ER) plays an indispensable role in cellular processes, including maintenance of calcium homeostasis, and protein folding, synthesized and processing. Disruptions in these processes leading to ER stress and the accumulation of misfolded proteins can instigate the unfolded protein response (UPR), culminating in either restoration of balanced proteostasis or apoptosis. A key player in this intricate balance is CLCC1, an ER-resident chloride channel, whose essential role extends to retinal development, regulation of ER stress, and UPR. The importance of CLCC1 is further underscored by its interaction with proteins localized to mitochondria-associated endoplasmic reticulum membranes (MAMs), where it participates in UPR induction by MAM proteins. In previous research, we identified a p.(Asp25Glu) pathogenic CLCC1 variant associated with retinitis pigmentosa (RP) (CLCC1 hg38 NC_000001.11; NM_001048210.3, c.75C > A; UniprotKB Q96S66). In attempt to decipher the impact of this variant function, we leveraged liquid chromatography-mass spectrometry (LC-MS) to identify likely CLCC1-interacting proteins. We discovered that the CLCC1 interactome is substantially composed of proteins that localize to ER compartments and that the Asp25Glu variant results in noticeable loss and gain of specific protein interactors. Intriguingly, the analysis suggests that the CLCC1Asp25Glu mutant protein exhibits a propensity for increased interactions with cytoplasmic proteins compared to its wild-type counterpart. To corroborate our LC-MS data, we further scrutinized two novel CLCC1 interactors, Calnexin and SigmaR1, chaperone proteins that localize to the ER and MAMs. Through microscopy, we demonstrate that CLCC1 co-localizes with both proteins, thereby validating our initial findings. Moreover, our results reveal that CLCC1 co-localizes with SigmaR1 not merely at the ER, but also at MAMs. These findings reinforce the notion of CLCC1 interacting with MAM proteins at the ER-mitochondria interface, setting the stage for further exploration into how these interactions impact ER or mitochondria function and lead to retinal degenerative disease when impaired

    MNS1 variant associated with situs inversus and male infertility

    Get PDF
    Ciliopathy disorders due to abnormalities of motile cilia encompass a range of autosomal recessive conditions typified by chronic otosinopulmonary disease, infertility, situs abnormalities and hydrocephalus. Using a combination of genome-wide SNP mapping and whole exome sequencing (WES), we investigated the genetic cause of a form of situs inversus (SI) and male infertility present in multiple individuals in an extended Amish family, assuming that an autosomal recessive founder variant was responsible. This identified a single shared (2.34 Mb) region of autozygosity on chromosome 15q21.3 as the likely disease locus, in which we identified a single candidate biallelic frameshift variant in MNS1 [NM_018365.2: c.407_410del; p.(Glu136Glyfs*16)]. Genotyping of multiple family members identified randomisation of the laterality defects in other homozygous individuals, with all wild type or MNS1 c.407_410del heterozygous carriers being unaffected, consistent with an autosomal recessive mode of inheritance. This study identifies an MNS1 variant as a cause of laterality defects and male infertility in humans, mirroring findings in Mns1-deficient mice which also display male infertility and randomisation of left-right asymmetry of internal organs, confirming a crucial role for MNS1 in nodal cilia and sperm flagella formation and function.This article is freely available via Open Access. Click on the Publisher URL to access the full-text

    A quantitative LC-MS/MS method for analysis of mitochondrial -specific oxysterol metabolism

    Get PDF
    Oxysterols are critical regulators of inflammation and cholesterol metabolism in cells. They are oxidation products of cholesterol and may be differentially metabolised in subcellular compartments and in biological fluids. New analytical methods are needed to improve our understanding of oxysterol trafficking and the molecular interplay between the cellular compartments required to maintain cholesterol/oxysterol homeostasis. Here we describe a method for isolation of oxysterols using solid phase extraction and quantification by liquid chromatography-mass spectrometry, applied to tissue, cells and mitochondria. We analysed five monohydroxysterols; 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7 ketocholesterol and three dihydroxysterols 7α-24(S)dihydroxycholesterol, 7α-25dihydroxycholesterol, 7α-27dihydroxycholesterol by LC-MS/MS following reverse phase chromatography. Our new method, using Triton and DMSO extraction, shows improved extraction efficiency and recovery of oxysterols from cellular matrix. We validated our method by reproducibly measuring oxysterols in mouse brain tissue and showed that mice fed a high fat diet had significantly lower levels of 24S/25diOHC, 27diOHC and 7ketoOHC. We measured oxysterols in mitochondria from peripheral blood mononuclear cells and highlight the importance of rapid cell isolation to minimise effects of handling and storage conditions on oxysterol composition in clinical samples. In addition, in vitro cell culture systems, of THP-1 monocytes and neuronal-like SH-SH5Y cells, showed mitochondrial-specific oxysterol metabolism and profiles were lineage specific. In summary, we describe a robust and reproducible method validated for improved recovery, quantitative linearity and detection, reproducibility and selectivity for cellular oxysterol analysis. This method enables subcellular oxysterol metabolism to be monitored and is versatile in its application to various biological and clinical samples.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.K Borah and HR Griffiths acknowledge INClusilver funded by the European Union, grant number H2020–INNOSUP‐2017‐2017 731349; NeutroCure funded by the European Union, grant number H2020-FETOPEN-01-2018-2019-2020 861878 and Faculty Research Support Fund (FRSF) fund from the University of Surrey 2019–2020. K Borah also acknowledges support of training grant 2019 Ref T022 from VALIDATE network. I Ampong, D Gao and HR Griffiths acknowledge funding from BBSRC (China Partnering Award BB/M028100/2. D Gao acknowledges funding from the National Natural Science Foundation of China(NFSC)(GrantNo.81873665).IHKD acknowledges funding from Alzheimer's research UK midlands network grant 2019. AH Crosby and EL Baple acknowledge support from the Hereditary Spastic Paraplegia Support Group and The Diamond Jubilee Doctoral Scholarship Fund.published version, accepted version, submitted versio

    Recurrent De Novo NAHR Reciprocal Duplications in the ATAD3 Gene Cluster Cause a Neurogenetic Trait with Perturbed Cholesterol and Mitochondrial Metabolism.

    Get PDF
    Recent studies have identified both recessive and dominant forms of mitochondrial disease that result from ATAD3A variants. The recessive form includes subjects with biallelic deletions mediated by non-allelic homologous recombination. We report five unrelated neonates with a lethal metabolic disorder characterized by cardiomyopathy, corneal opacities, encephalopathy, hypotonia, and seizures in whom a monoallelic reciprocal duplication at the ATAD3 locus was identified. Analysis of the breakpoint junction fragment indicated that these 67 kb heterozygous duplications were likely mediated by non-allelic homologous recombination at regions of high sequence identity in ATAD3A exon 11 and ATAD3C exon 7. At the recombinant junction, the duplication allele produces a fusion gene derived from ATAD3A and ATAD3C, the protein product of which lacks key functional residues. Analysis of fibroblasts derived from two affected individuals shows that the fusion gene product is expressed and stable. These cells display perturbed cholesterol and mitochondrial DNA organization similar to that observed for individuals with severe ATAD3A deficiency. We hypothesize that the fusion protein acts through a dominant-negative mechanism to cause this fatal mitochondrial disorder. Our data delineate a molecular diagnosis for this disorder, extend the clinical spectrum associated with structural variation at the ATAD3 locus, and identify a third mutational mechanism for ATAD3 gene cluster variants. These results further affirm structural variant mutagenesis mechanisms in sporadic disease traits, emphasize the importance of copy number analysis in molecular genomic diagnosis, and highlight some of the challenges of detecting and interpreting clinically relevant rare gene rearrangements from next-generation sequencing data

    HERC2 deficiency activates C-RAF/MKK3/p38 signalling pathway altering the cellular response to oxidative stress

    Get PDF
    HERC2 gene encodes an E3 ubiquitin ligase involved in several cellular processes by regulating the ubiquitylation of different protein substrates. Biallelic pathogenic sequence variants in the HERC2 gene are associated with HERC2 Angelman-like syndrome. In pathogenic HERC2 variants, complete absence or marked reduction in HERC2 protein levels are observed. The most common pathological variant, c.1781C > T (p.Pro594Leu), encodes an unstable HERC2 protein. A better understanding of how pathologic HERC2 variants affect intracellular signalling may aid definition of potential new therapies for these disorders. For this purpose, we studied patient-derived cells with the HERC2 Pro594Leu variant. We observed alteration of mitogen-activated protein kinase signalling pathways, reflected by increased levels of C-RAF protein and p38 phosphorylation. HERC2 knockdown experiments reproduced the same effects in other human and mouse cells. Moreover, we demonstrated that HERC2 and RAF proteins form molecular complexes, pull-down and proteomic experiments showed that HERC2 regulates C-RAF ubiquitylation and we found out that the p38 activation due to HERC2 depletion occurs in a RAF/MKK3-dependent manner. The displayed cellular response was that patient-derived and other human cells with HERC2 deficiency showed higher resistance to oxidative stress with an increase in the master regulator of the antioxidant response NRF2 and its target genes. This resistance was independent of p53 and abolished by RAF or p38 inhibitors. Altogether, these findings identify the activation of C-RAF/MKK3/p38 signalling pathway in HERC2 Angelman-like syndrome and highlight the inhibition of RAF activity as a potential therapeutic option for individuals affected with these rare diseases

    Growth disrupting mutations in epigenetic regulatory molecules are associated with abnormalities of epigenetic aging.

    Get PDF
    Germline mutations in fundamental epigenetic regulatory molecules including DNA methyltransferase 3 alpha (DNMT3A) are commonly associated with growth disorders, whereas somatic mutations are often associated with malignancy. We profiled genome-wide DNA methylation patterns in DNMT3A c.2312G > A; p.(Arg771Gln) carriers in a large Amish sibship with Tatton-Brown-Rahman syndrome (TBRS), their mosaic father, and 15 TBRS patients with distinct pathogenic de novo DNMT3A variants. This defined widespread DNA hypomethylation at specific genomic sites enriched at locations annotated as genes involved in morphogenesis, development, differentiation, and malignancy predisposition pathways. TBRS patients also displayed highly accelerated DNA methylation aging. These findings were most marked in a carrier of the AML-associated driver mutation p.Arg882Cys. Our studies additionally defined phenotype-related accelerated and decelerated epigenetic aging in two histone methyltransferase disorders: NSD1 Sotos syndrome overgrowth disorder and KMT2D Kabuki syndrome growth impairment. Together, our findings provide fundamental new insights into aberrant epigenetic mechanisms, the role of epigenetic machinery maintenance, and determinants of biological aging in these growth disorders
    • 

    corecore