89 research outputs found

    Rac1 GTPase and the Rac1 exchange factor Tiam1 associate with Wnt-responsive promoters to enhance beta-catenin/TCF-dependent transcription in colorectal cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>β-catenin is a key mediator of the canonical Wnt pathway as it associates with members of the T-cell factor (TCF) family at Wnt-responsive promoters to drive the transcription of Wnt target genes. Recently, we showed that Rac1 GTPase synergizes with β-catenin to increase the activity of a TCF-responsive reporter. This synergy was dependent on the nuclear presence of Rac1, since inhibition of its nuclear localization effectively abolished the stimulatory effect of Rac1 on TCF-responsive reporter activity. We hypothesised that Rac1 plays a direct role in enhancing the transcription of endogenous Wnt target genes by modulating the β-catenin/TCF transcription factor complex.</p> <p>Results</p> <p>We employed chromatin immunoprecipitation studies to demonstrate that Rac1 associates with the β-catenin/TCF complex at Wnt-responsive promoters of target genes. This association served to facilitate transcription, since overexpression of active Rac1 augmented Wnt target gene activation, whereas depletion of endogenous Rac1 by RNA interference abrogated this effect. In addition, the Rac1-specific exchange factor, Tiam1, potentiated the stimulatory effects of Rac1 on the canonical Wnt pathway. Tiam1 promoted the formation of a complex containing Rac1 and β-catenin. Furthermore, endogenous Tiam1 associated with endogenous β-catenin, and this interaction was enhanced in response to Wnt3a stimulation. Intriguingly, Tiam1 was recruited to Wnt-responsive promoters upon Wnt3a stimulation, whereas Rac1 was tethered to TCF binding elements in a Wnt-independent manner.</p> <p>Conclusion</p> <p>Taken together, our results suggest that Rac1 and the Rac1-specific activator Tiam1 are components of transcriptionally active β-catenin/TCF complexes at Wnt-responsive promoters, and the presence of Rac1 and Tiam1 within these complexes serves to enhance target gene transcription. Our results demonstrate a novel functional mechanism underlying the cross-talk between Rac1 and the canonical Wnt signalling pathway.</p

    Development of a multivariable risk model integrating urinary cell DNA methylation and cell-free RNA data for the detection of significant prostate cancer

    Get PDF
    Background: Prostate cancer exhibits severe clinical heterogeneity and there is a critical need for clinically implementable tools able to precisely and noninvasively identify patients that can either be safely removed from treatment pathways or those requiring further follow up. Our objectives were to develop a multivariable risk prediction model through the integration of clinical, urine-derived cell-free messenger RNA (cf-RNA) and urine cell DNA methylation data capable of noninvasively detecting significant prostate cancer in biopsy naïve patients. Methods: Post-digital rectal examination urine samples previously analyzed separately for both cellular methylation and cf-RNA expression within the Movember GAP1 urine biomarker cohort were selected for a fully integrated analysis (n = 207). A robust feature selection framework, based on bootstrap resampling and permutation, was utilized to find the optimal combination of clinical and urinary markers in a random forest model, deemed ExoMeth. Out-of-bag predictions from ExoMeth were used for diagnostic evaluation in men with a clinical suspicion of prostate cancer (PSA ≥ 4 ng/mL, adverse digital rectal examination, age, or lower urinary tract symptoms). Results: As ExoMeth risk score (range, 0-1) increased, the likelihood of high-grade disease being detected on biopsy was significantly greater (odds ratio = 2.04 per 0.1 ExoMeth increase, 95% confidence interval [CI]: 1.78-2.35). On an initial TRUS biopsy, ExoMeth accurately predicted the presence of Gleason score ≥3 + 4, area under the receiver-operator characteristic curve (AUC) = 0.89 (95% CI: 0.84-0.93) and was additionally capable of detecting any cancer on biopsy, AUC = 0.91 (95% CI: 0.87-0.95). Application of ExoMeth provided a net benefit over current standards of care and has the potential to reduce unnecessary biopsies by 66% when a risk threshold of 0.25 is accepted. Conclusion: Integration of urinary biomarkers across multiple assay methods has greater diagnostic ability than either method in isolation, providing superior predictive ability of biopsy outcomes. ExoMeth represents a more holistic view of urinary biomarkers and has the potential to result in substantial changes to how patients suspected of harboring prostate cancer are diagnosed

    Penetrance of colorectal cancer among MLH1/MSH2 carriers participating in the colorectal cancer familial registry in Ontario

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several DNA mismatch repair (MMR) genes, responsible for the majority of Lynch Syndrome cancers, have been identified, predominantly <it>MLH1 </it>and <it>MSH2</it>, but the risk associated with these mutations is still not well established. The aim of this study is to provide population-based estimates of the risks of colorectal cancer (CRC) by gender and mutation type from the Ontario population.</p> <p>Methods</p> <p>We analyzed 32 families segregating MMR mutations selected from the Ontario Familial Colorectal Cancer Registry and including 199 first-degree and 421 second-degree relatives. The cumulative risks were estimated using a modified segregation-based approach, which allows correction for the ascertainment of the Lynch Syndrome families and permits account to be taken for missing genotype information.</p> <p>Results</p> <p>The risks of developing CRC by age 70 were 60% and 47% among men and women carriers of any MMR mutation, respectively. Among <it>MLH1 </it>mutation carriers, males had significantly higher risks than females at all ages (67% vs. 35% by age 70, p-value = 0.02), while the risks were similar in <it>MSH2 </it>carriers (about 54%). The relative risk associated with <it>MLH1 </it>was almost constant with age (hazard ratio (HR) varied between 5.5-5.1 over age 30–70), while the HR for <it>MSH2 </it>decreased with age (from 13.1 at age 30 to 5.4 at age 70).</p> <p>Conclusion</p> <p>This study provides a unique population-based study of CRC risks among <it>MSH2</it>/<it>MLH1 </it>mutation carriers in a Canadian population and can help to better define and understand the patterns of risks among members of Lynch Syndrome families.</p

    epiCaPture: a urine DNA methylation test for early detection of aggressive prostate cancer

    Get PDF
    Purpose Liquid biopsies that noninvasively detect molecular correlates of aggressive prostate cancer (PCa) could be used to triage patients, reducing the burdens of unnecessary invasive prostate biopsy and enabling early detection of high-risk disease. DNA hypermethylation is among the earliest and most frequent aberrations in PCa. We investigated the accuracy of a six-gene DNA methylation panel (Epigenetic Cancer of the Prostate Test in Urine [epiCaPture]) at detecting PCa, high-grade (Gleason score greater than or equal to 8) and high-risk (D'Amico and Cancer of the Prostate Risk Assessment] PCa from urine. Patients and Methods Prognostic utility of epiCaPture genes was first validated in two independent prostate tissue cohorts. epiCaPture was assessed in a multicenter prospective study of 463 men undergoing prostate biopsy. epiCaPture was performed by quantitative methylation-specific polymerase chain reaction in DNA isolated from prebiopsy urine sediments and evaluated by receiver operating characteristic and decision curves (clinical benefit). The epiCaPture score was developed and validated on a two thirds training set to one third test set. Results Higher methylation of epiCaPture genes was significantly associated with increasing aggressiveness in PCa tissues. In urine, area under the receiver operating characteristic curve was 0.64, 0.86, and 0.83 for detecting PCa, high-grade PCa, and highrisk PCa, respectively. Decision curves revealed a net benefit across relevant threshold probabilities. Independent analysis of two epiCaPture genes in the same clinical cohort provided analytical validation. Parallel epiCaPture analysis in urine and matched biopsy cores showed added value of a liquid biopsy. Conclusion epiCaPture is a urine DNA methylation test for high-risk PCa. Its tumor specificity out-performs that of prostate-specific antigen (greater than 3 ng/mL). Used as an adjunct to prostate-specific antigen, epiCaPture could aid patient stratification to determine need for biopsy

    Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: A Prospective Cohort Study

    Get PDF
    To determine whether cancer risks for carriers and noncarriers from families with a mismatch repair (MMR) gene mutation are increased above the risks of the general population. We prospectively followed a cohort of 446 unaffected carriers of an MMR gene mutation (MLH1, n = 161; MSH2, n = 222; MSH6, n = 47; and PMS2, n = 16) and 1,029 their unaffected relatives who did not carry a mutation every 5 years at recruitment centers of the Colon Cancer Family Registry. For comparison of cancer risk with the general population, we estimated country-, age-, and sex-specific standardized incidence ratios (SIRs) of cancer for carriers and noncarriers. Over a median follow-up of 5 years, mutation carriers had an increased risk of colorectal cancer (CRC; SIR, 20.48; 95% CI, 11.71 to 33.27; P < .001), endometrial cancer (SIR, 30.62; 95% CI, 11.24 to 66.64; P < .001), ovarian cancer (SIR, 18.81; 95% CI, 3.88 to 54.95; P < .001), renal cancer (SIR, 11.22; 95% CI, 2.31 to 32.79; P < .001), pancreatic cancer (SIR, 10.68; 95% CI, 2.68 to 47.70; P = .001), gastric cancer (SIR, 9.78; 95% CI, 1.18 to 35.30; P = .009), urinary bladder cancer (SIR, 9.51; 95% CI, 1.15 to 34.37; P = .009), and female breast cancer (SIR, 3.95; 95% CI, 1.59 to 8.13; P = .001). We found no evidence of their noncarrier relatives having an increased risk of any cancer, including CRC (SIR, 1.02; 95% CI, 0.33 to 2.39; P = .97). We confirmed that carriers of an MMR gene mutation were at increased risk of a wide variety of cancers, including some cancers not previously recognized as being a result of MMR mutations, and found no evidence of an increased risk of cancer for their noncarrier relatives

    Discovery of Novel Hypermethylated Genes in Prostate Cancer Using Genomic CpG Island Microarrays

    Get PDF
    BACKGROUND: Promoter and 5' end methylation regulation of tumour suppressor genes is a common feature of many cancers. Such occurrences often lead to the silencing of these key genes and thus they may contribute to the development of cancer, including prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to identify methylation changes in prostate cancer, we performed a genome-wide analysis of DNA methylation using Agilent human CpG island arrays. Using computational and gene-specific validation approaches we have identified a large number of potential epigenetic biomarkers of prostate cancer. Further validation of candidate genes on a separate cohort of low and high grade prostate cancers by quantitative MethyLight analysis has allowed us to confirm DNA hypermethylation of HOXD3 and BMP7, two genes that may play a role in the development of high grade tumours. We also show that promoter hypermethylation is responsible for downregulated expression of these genes in the DU-145 PCa cell line. CONCLUSIONS/SIGNIFICANCE: This study identifies novel epigenetic biomarkers of prostate cancer and prostate cancer progression, and provides a global assessment of DNA methylation in prostate cancer

    Lower Cancer Incidence in Amsterdam-I Criteria Families Without Mismatch Repair Deficiency: Familial Colorectal Cancer Type X

    Get PDF
    Approximately 60% of families that meet the Amsterdam-I criteria (AC-I) for hereditary nonpolyposis colorectal cancer (HNPCC) have a hereditary abnormality in a DNA mismatch repair (MMR) gene. Cancer incidence in AC-I families with MMR gene mutations is reported to be very high, but cancer incidence for individuals in AC-I families with no evidence of an MMR defect is unknown

    Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History

    Get PDF
    The CpG Island Methylator Phenotype (CIMP) represents a subset of colorectal cancers (CRCs) characterized by widespread aberrant DNA hypermethylation at select CpG islands. The risk factors and environmental exposures contributing to etiologic heterogeneity between CIMP and non-CIMP tumors are not known

    Association of the Colorectal CpG Island Methylator Phenotype with Molecular Features, Risk Factors, and Family History

    Get PDF
    BACKGROUND: The CpG Island Methylator Phenotype (CIMP) represents a subset of colorectal cancers (CRCs) characterized by widespread aberrant DNA hypermethylation at select CpG islands. The risk factors and environmental exposures contributing to etiologic heterogeneity between CIMP and non-CIMP tumors are not known. METHODS: We measured the CIMP status of 3,119 primary population-based CRC tumors from the multinational Colon Cancer Family Registry. Etiologic heterogeneity was assessed by a case-case study comparing risk factor frequency of CRC cases with CIMP and non-CIMP tumors using logistic regression to estimate the case-case odds ratio (ccOR). RESULTS: We found associations between tumor CIMP status and MSI-H (ccOR=7.6), BRAF V600E mutation (ccOR=59.8), proximal tumor site (ccOR=9) (all p<0.0001), female sex (ccOR=1.8; 95% CI=1.5-2.1), older age (ccOR=4.0 comparing over 70 years vs under 50; 95% CI=3.0-5.5) and family history of CRC (ccOR=0.6, 95% CI=0.5-0.7). While use of NSAIDs varied by tumor CIMP status for both males and females (p=0.0001 and p=0.02, respectively), use of multi-vitamin or calcium supplements did not. Only for female CRCs was CIMP status associated with increased pack-years of smoking (trend p < 0.001) and body mass index (BMI) (trend p = 0.03). CONCLUSIONS: The frequency of several CRC risk factors varied by CIMP status, and the associations of smoking and obesity with tumor subtype were evident only for females. IMPACT: Differences in the associations of a unique DNA methylation-based subgroup of CRC with important lifestyle and environmental exposures increase understanding of the molecular pathologic epidemiology of this heavily methylated subset of CRCs
    corecore