109 research outputs found

    Designer Amphiphilic Short Peptides Enhance Thermal Stability of Isolated Photosystem-I

    Get PDF
    Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies

    Journal of Sediment Research (in Chinese)

    No full text
    info:eu-repo/semantics/publishe

    Forecast of oil reserves and production in Daqing oilfield of China. Energy 2010

    No full text
    a b s t r a c t As China' largest oilfield, Daqing is of great importance to China, this paper analyzes the status of the Daqing oilfield and forecasts its ultimate recoverable reserves by use of the URR model. The forecast results are presented for three scenarios which show that the ultimate recoverable reserves in Daqing oilfield are 3574.0 million tons in the optimistic scenario, 3169.3 million in the base case scenario and 3033.3 million in the pessimistic scenario, respectively. A system dynamics model is established and the quantitative relationships between variables in the model are determined. Total oil production, remaining recoverable reserves, annual newly discovered reserves, and the degree of reserves recovery before 2060 are simulated under the three scenarios by use of the system dynamics model. The forecast results show that the future oil production in Daqing oilfield will continue declining, under the base case scenario, from 41.6 million tons in 2007 to 8.0 million tons in 2060. For Chinese policy-makers, it is worth paying attention to the problem of whether oil production in new oilfields can effectively make up for the decline in production of the large, old oilfields

    DOA estimation algorithm based on spread spectrum sequence in low signal-to-noise ratio

    No full text
    Abstract Spread spectrum communication is a common communication method in underwater communication. Based on the space-time processor received by the array, it can filter the signals arriving along each path separately. Combined with the diversity of space-time clusters, it can effectively improve the communication system’s reliability. The core problem of the space-time processor is the direction of arrival (DOA) and signal source number estimation. Based on the good self-coherence of the spread spectrum sequence, this paper proposes a multiple signal classification algorithm (MUSIC) for accurate DOA estimation. However, since the MUSIC algorithm uses the received signal’s covariance matrix for DOA estimation, the number of sources needs to be predicted in advance. Under a low signal-to-noise ratio (SNR), the signal eigenvalues and the noise eigenvalues of the covariance matrix differ slightly, which makes signal source number estimation difficult. To address this issue, a singular value decomposition method using the delay structure information of the array element is proposed to estimate the number of sources of the spreading sequence under a low SNR. The method proposed in this paper can well estimate the DOA of the signal under a low SNR. Meanwhile, there is no need to convert the signal to the individual sub-bands, which effectively reduces the calculation overhead. At the same time, the Hankel matrix is used to solve the problem that the MUSIC algorithm cannot accurately estimate the number of signal sources under the condition of low SNR. Compared with the conventional algorithm, the Hankel matrix can more accurately estimate the number of signal sources in the case of low SNR. Through simulation experiments, the effectiveness of our DOA estimation algorithm is validated under a low SNR

    Exploring the Gateway-Based Distributed Location Management Schemes in LEO Satellite Networks

    No full text

    Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata

    No full text
    Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction of genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history

    Exploring the Reliable Multicast Transport of BGP in Geostationary Satellite Networks Based on Network Coding

    No full text

    Data from: Colonization of the Tibetan Plateau by the homoploid hybrid pine Pinus densata

    No full text
    Pinus densata is an intriguingly successful homoploid hybrid species that occupies vast areas of the southeastern Tibetan Plateau in which neither of its parental species are present, but the colonization processes involved are poorly understood. To shed light on how this species colonized and became established on the plateau, we surveyed paternally inherited chloroplast (cp) and maternally inherited mitochondrial (mt) DNA variation within and among 54 populations of P. densata and its putative parental species throughout their respective ranges. Strong spatial genetic structure of both cp and mtDNA were detected in P. densata populations. Mitotypes specific to P. densata were likely generated by complex recombination events. A putative ancestral hybrid zone in the northeastern periphery of P. densata was identified, and we propose that the species then colonized the plateau by migrating westwards. Along the colonization route, consecutive bottlenecks and surfing of rare alleles caused a significant reduction of genetic diversity and strong population differentiation. The direction and intensity of introgression from parental species varied among geographic regions. In western parts of its range the species seems to have been isolated from seed and pollen flow from its parent species for a long time. The observed spatial distribution of genetic diversity in P. densata also appears to reflect the persistence of this species on the plateau during the last glaciation. Our results indicate that both ancient and contemporary population dynamics have contributed to the spatial distribution of genetic diversity in P. densata, which accordingly reflects its evolutionary history
    • …
    corecore