94 research outputs found

    Improved emulsion stability and modified nutrient release by structuring O/W emulsions using konjac glucomannan

    Get PDF
    peer-reviewedFunctional konjac glucomannan (KGM) was used to structure the water phase of O/W emulsions containing a lipophilic bioactive compound (β-carotene). KGM greatly increased the viscosity of the water phase and thus the viscosity of final emulsions. Results of Fourier-transform infrared spectroscopy (FT-IR) showed that there is no significant non-covalent interaction between KGM and whey proteins in the water phase. KGM significantly improved the creaming and pH stability of whey-protein-stabilized emulsions (p < 0.05), and significantly decreased the oiling-off of emulsions during freeze-thaw test. Emulsions with or without KGM all had good thermal stability at 80 °C. Microscopy observations indicated obvious aggregation of free proteins and oil droplets in gastric phase and an enzymatic-induced break-down of droplets, mainly in the intestinal phase of the simulated gastrointestinal tract (GIT) digestion. Emulsions with KGM-structured water phase showed a lower final release rate of encapsulated β-carotene than emulsion without KGM (p < 0.05), and the release rate decreased with the increasing KGM content. The findings of this study contribute to a better understanding of the influence of the water phase on the release of encapsulated compounds from emulsions, and make it possible to achieve controlled release of encapsulated compounds, and/or to deliver multiple health-beneficial nutrients at once by structuring emulsion-based carriers with functional natural biopolymers

    Phenotypic, fermentation characterization, and resistance mechanism analysis of bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus isolated from traditional Chinese dairy products

    Get PDF
    peer-reviewedBacteriophage infection is a large factor in dairy industrial production failure on the basis of pure inoculation fermentation, and developing good commercial starter cultures from wild dairy products and improving the environmental vigor of starter cultures by enhancing their phage resistance are still the most effective solutions. Here we used a spontaneous isolation method to obtain bacteriophage-resistant mutants of Lactobacillus delbrueckii ssp. bulgaricus strains that are used in traditional Chinese fermented dairy products. We analyzed their phenotypes, fermentation characteristics, and resistance mechanisms. The results showed that bacteriophage-insensitive mutants (BIM) BIM8 and BIM12 had high bacteriophage resistance while exhibiting fermentation and coagulation attributes that were as satisfying as those of their respective parent strains KLDS1.1016 and KLDS1.1028. According to the attachment receptor detection, mutants BIM8 and BIM12 exhibited reduced absorption to bacteriophage phiLdb compared with their respective bacteriophage-sensitive parent strains because of changes to the polysaccharides or teichoic acids connected to their peptidoglycan layer. Additionally, genes, including HSDR, HSDM, and HSDS, encoding 3 subunits of a type I restriction-modification system were identified in their respective parent strains. We also discovered that HSDR and HSDM were highly conserved but that HSDS was variable because it is responsible for the DNA specificity of the complex. The late lysis that occurred only in strain KLDS1.1016 and not in strain KLDS1.1028 suggests that the former and its mutant BIM8 also may have an activatable restriction-modification mechanism. We conclude that the L. bulgaricus BIM8 and BIM12 mutants have great potential in the dairy industry as starter cultures, and their phage-resistance mechanism was effective mainly due to the adsorption interference and restriction-modification system

    Interactions of vegetable proteins with other polymers: Structure-function relationships and applications in the food industry

    Get PDF
    peer-reviewedBackground In recent years, there has been increasing interest in vegetable proteins, due to their various health beneficial functions and wide applications in the food industry. Vegetable proteins combined with other edible polymers can be used to improve the quality and nutritional value of food products. In these complex food systems, interactions between different components are inevitable, and these interactions have a significant influence on the structure and functions of food products. Scope and approach This study reviews the current status of knowledge of interactions between vegetable proteins and other polymers (proteins or polysaccharides) in food systems and the structure of complexes formed by these interactions. The study also provides a comprehensive review of the applications of the complexes. Key findings and conclusions Vegetable proteins display different types of interactions with other polymers (e.g., polysaccharides, or animal proteins) under different conditions, thus forming a variety of complexes with different structures (e.g., double networks, mosaic textures and cross-linked structures), which showed different impact on properties of the final food products and their applications (e.g., substitution for fat, or encapsulation for bioactive ingredients) in the food industry. However, previous studies mainly focused on leguminous proteins and vegetable-protein-based mixtures of two polymers, further studies on other vegetable proteins and more complex food systems containing vegetable proteins and other polymers are required

    Chloroplast genome structure analysis of Equisetum unveils phylogenetic relationships to ferns and mutational hotspot region

    Get PDF
    Equisetum is one of the oldest extant group vascular plants and is considered to be the key to understanding vascular plant evolution. Equisetum is distributed almost all over the world and has a high degree of adaptability to different environments. Despite the fossil record of horsetails (Equisetum, Equisetaceae) dating back to the Carboniferous, the phylogenetic relationship of this genus is not well, and the chloroplast evolution in Equisetum remains poorly understood. In order to fill this gap, we sequenced, assembled, and annotated the chloroplast genomes of 12 species of Equisetum, and compared them to 13 previously published vascular plants chloroplast genomes to deeply examine the plastome evolutionary dynamics of Equisetum. The chloroplast genomes have a highly conserved quadripartite structure across the genus, but these chloroplast genomes have a lower GC content than other ferns. The size of Equisetum plastomes ranges from 130,773 bp to 133,684 bp and they encode 130 genes. Contraction/expansion of IR regions and the number of simple sequences repeat regions underlie large genomic variations in size among them. Comparative analysis revealed we also identified 13 divergence hotspot regions. Additionally, the genes accD and ycf1 can be used as potential DNA barcodes for the identification and phylogeny of the genus Equisetum. Twelve photosynthesis-related genes were specifically selected in Equisetum. Comparative genomic analyses implied divergent evolutionary patterns between Equisetum and other ferns. Phylogenomic analyses and molecular dating revealed a relatively distant phylogenetic relationship between Equisetum and other ferns, supporting the division of pteridophyte into Lycophytes, Equisetaceae and ferns. The results show that the chloroplast genome can be used to solve phylogenetic problems within or between Equisetum species, and also provide genomic resources for the study of Equisetum systematics and evolution

    Influences of Canopy Nitrogen and Water Addition on AM Fungal Biodiversity and Community Composition in a Mixed Deciduous Forest of China

    Get PDF
    Nitrogen (N) deposition and precipitation could profoundly influence the structure and function of forest ecosystems. However, conventional studies with understory additions of nitrogen and water largely ignored canopy-associated ecological processes and may have not accurately reflected the natural situations. Additionally, most studies only made sampling at one time point, overlooked temporal dynamics of ecosystem response to environmental changes. Here we carried out a field trial in a mixed deciduous forest of China with canopy addition of N and water for 4 years to investigate the effects of increased N deposition and precipitation on the diversity and community composition of arbuscular mycorrhizal (AM) fungi, the ubiquitous symbiotic fungi for the majority of terrestrial plants. We found that (1) in the 1st year, N addition, water addition and their interactions all exhibited significant influences on AM fungal community composition; (2) in the 2nd year, only water addition significantly reduced AM fungal alpha-diversity (richness and Shannon index); (3) in the next 2 years, both N addition and water addition showed no significant effect on AM fungal community composition or alpha-diversity, with an exception that water addition significantly changed AM fungal community composition in the 4th year; (4) the increment of N or water tended to decrease the abundance and richness of the dominant genus Glomus and favored other AM fungi. (5) soil pH was marginally positively related with AM fungal community composition dissimilarity, soil NH4+-N and N/P showed significant/marginal positive correlation with AM fungal alpha-diversity. We concluded that the effect of increased N deposition and precipitation on AM fungal community composition was time-dependent, mediated by soil factors, and possibly related to the sensitivity and resilience of forest ecosystem to environmental changes

    Exploring the Potential of Gaofen-1/6 for Crop Monitoring: Generating Daily Decametric-Resolution Leaf Area Index Time Series

    Get PDF
    High spatiotemporal resolution time series of leaf area index (LAI) are essential for monitoring crop dynamics and validating coarse-resolution LAI products. The optical satellite sensors at decametric resolution have historically suffered from a long revisit cycle and cloud contamination issues that hampered the acquisition of frequent and high-quality observations. The 16-m/four-day resolution of the new-generation Gaofen-1 (GF-1) and Gaofen-6 (GF-6) satellites provide an unprecedented opportunity to address these limitations. Here, we developed an effective strategy to generate daily 16-m LAI maps combining GF-1/6 data and ground LAINet measurements. All high-quality GF-1/6 observations were utilized first to derive smoothed time series of vegetation indices (VIs). Second, a random forest regression (RF-r) model was trained to link the VIs with corresponding field LAI measurements. The trained RF-r was finally employed to generate the LAI maps. Results demonstrated the reliability of the reconstructed daily VIs (relative error (RE) < 1%) and the derived LAI time series, which greatly benefited from GF-1/6 high-frequency observations. The direct comparison with field LAI measurements by LAI-2200/LI-3000 showed the good performance of retrieved LAI maps, with bias, root mean square error (RMSE), and R2 of 0.05, 0.59, and 0.75, respectively. The LAI time series well captured the spatiotemporal variation of crop growth. Furthermore, the continuous GF-1/6 LAI maps outperformed Sentinel-2 LAI estimates both in terms of temporal frequency and accuracy. Our study indicates the potential of GF-1/6 to generate continuous decametric-resolution LAI maps for fine-scale agricultural monitoring

    Multifaceted Regulation of Translational Readthrough by RNA Replication Elements in a Tombusvirus

    Get PDF
    Translational readthrough of stop codons by ribosomes is a recoding event used by a variety of viruses, including plus-strand RNA tombusviruses. Translation of the viral RNA-dependent RNA polymerase (RdRp) in tombusviruses is mediated using this strategy and we have investigated this process using a variety of in vitro and in vivo approaches. Our results indicate that readthrough generating the RdRp requires a novel long-range RNA-RNA interaction, spanning a distance of ∼3.5 kb, which occurs between a large RNA stem-loop located 3'-proximal to the stop codon and an RNA replication structure termed RIV at the 3'-end of the viral genome. Interestingly, this long-distance RNA-RNA interaction is modulated by mutually-exclusive RNA structures in RIV that represent a type of RNA switch. Moreover, a different long-range RNA-RNA interaction that was previously shown to be necessary for viral RNA replicase assembly was also required for efficient readthrough production of the RdRp. Accordingly, multiple replication-associated RNA elements are involved in modulating the readthrough event in tombusviruses and we propose an integrated mechanistic model to describe how this regulatory network could be advantageous by (i) providing a quality control system for culling truncated viral genomes at an early stage in the replication process, (ii) mediating cis-preferential replication of viral genomes, and (iii) coordinating translational readthrough of the RdRp with viral genome replication. Based on comparative sequence analysis and experimental data, basic elements of this regulatory model extend to other members of Tombusviridae, as well as to viruses outside of this family
    • …
    corecore