102 research outputs found

    Systematical calculation of alpha decay half-lives with a generalized liquid drop model

    Get PDF
    International audienceA systematic calculation of α decay half-lives is presented for even-even nuclei between Te and Z=118 isotopes. The potential energy governing α decay has been determined within a liquid drop model including proximity effects between the α particle and the daughter nucleus and taking into account the experimental Q value. The α decay half-lives have been deduced from the WKB barrier penetration probability. The α decay half-lives obtained agree reasonably well with the experimental data

    Measurement of inclusive η production in hadronic decays of the Z0

    Full text link

    A measurement of τ polarization in Z0 decays

    Full text link

    Deformation mechanisms in hexagonal close-packed high-entropy alloys

    Get PDF
    Single-phase hexagonal close-packed structure of the ScYLaGdTbDyHoErLu high-entropy alloy was studied in detail. The applicability of the rule of mixture was analyzed with respect to the lattice constant, mechanical parameters, elastic properties, melting point, and hardness of the alloy. Significant tension-compression asymmetry has been found and explained by the strength differential effect during the uniaxial tests. Numerous deformation twins and high densities of stacking faults can be observed from the morphological characterization by a transmission electron microscope, which governs the main deformation mechanism during the plastic deformation in the current high-entropy alloy

    Corrosion behavior and oxide layer of selective-laser-melted Al-Mg-Sc-Zr alloy in marine atmospheric environment with different Cl−concentration

    No full text
    In this study, the corrosion response of the Al-Mg-Sc-Zr alloy produced by selective laser-melting in marine atmospheric environments with different Cl− concentrations was studied by electrochemical and immersion. Microstructural observations showed the microstructural of Al-Mg- Sc -Zr alloy featured a double grain microstructure, making up a coarse and fine grain area. TEM showed that some white precipitates enriched with Zr and Sc were dispersed in the samples. The potentiodynamic polarization test indicated increasing the Cl− concentration led to a negative shift of corrosion potential and narrowed the potential range of the passive zone, which also caused the increase of corrosion current density value. The electrochemical impedance spectroscopy showed that higher Cl− concentration was greatly detrimental to generating a compact and dense oxide film on the Al-Mg-Sc-Zr alloys, as indicated by decreasing the resistance of the corrosion product layer and charge transfer resistance. The immersion test demonstrated that the samples suffered serious pit corrosion when the Cl− content increased to 1.5 and 3.5 wt%, showing a larger size and more depth of corrosion pits. This study is expected to provide data to determine the reliability of the SLM-manufactured Al-Mg-Sc-Zr alloy in marine atmospheric conditions

    A BIM-based collaborative design platform for variegated specialty design

    Get PDF
    With the increase in complexity of engineering projects and design quality in the construction industry, the traditional two-dimensional "Information Island" approach to design is becoming less able to meet current design needs due to its lack of coordination and information sharing. Collaborative design using a Build Information Modeling (BIM) technology platform promises to provide an effective means of designing and communicating through networking and real-time data sharing. This paper first analyzes the shortcomings of the two-dimensional design process and the potential application of collaborative design. By combining the attributes of BIM, a preliminary BIM-based building design collaborative platform is developed to improve the design approach and support a more collaborative design process. A real-life case is presented to demonstrate the feasibility and validity of the platform and its use in practice. From this, it is shown that BIM has the potential to realize effective information sharing and reduce errors, thereby improving design quality. The BIM-based building design collaborative platform presented is expected to provide the support needed for the extensive application of BIM in collaborative design and promote a new attitude to project management
    corecore