6,048 research outputs found

    Conductance plateau in quantum spin transport through an interacting quantum dot

    Full text link
    Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance "plateau" emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, originates from the strong electron correlation and exchange processes in the quantum dot, and can be regarded as one of the characteristics in quantum spin transport.Comment: 5 pages, 5 figure

    Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry

    Get PDF
    The inherent nodal structures of the wavefunctions of 6-nucleon systems have been investigated. The existence of a group of six low-lying states dominated by L=0 has been deduced. The spatial symmetries of these six states are found to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure

    Twenty putative palmitoyl-acyl transferase genes with distinct expression patterns in Arabidopsis thaliana

    Get PDF
    Palmitoylation is a reversible posttranslational addition of palmitate to cysteine residues in proteins through a thioester bond by a family of DHHC (Asp-His-His-Cys) palmitoyltransferases (PATs) involved in cellular signaling, membrane trafficking, and synaptic transmission. There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their phylogeny, gene structure and expression profiles in different tissues and under different stresses. Besides conserved DHHC domain, the identity of their cDNA sequences was from 30 to 60%. Temprospatial expression profile of each putative gene of the entire PAT family showed that nineteen of twenty putative PAT members differently expressed in flowers, leaves, stems, roots, seedlings, young and old siliques except At2g40990. Among these nineteen expressed putative PATs, some members expressed at very high levels in certain tissue and some exhibited more even distribution in different tissues. This is the first report on the expression patterns of all these putative PAT genes, which will provide important fundamental data for further identification of their biological functions.Key words: Palmitoylation, palmitoyltransferase, Arabidopsis thaliana, expression pattern

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Research progress on the premature ovarian failure caused by cisplatin therapy.

    Get PDF
    Cisplatin is a common anticancer drug able to kill tumor cells, but it causes adverse reactions in the kidney, digestive tract, and other systems. The antitumor effects of cisplatin are mainly due to its ability to bind to the DNA in tumor cells to prevent replication, thereby reducing RNA and protein syntheses, leading to cell damage and death. Cisplatin has a wide range of applications; it can be used to treat cervical, thyroid, ovarian, and other cancers. Cisplatin has a beneficial therapeutic effect, but its therapeutic selectivity is poor. In addition to eliminating diseased target cells, cisplatin can damage normal cells; in women of reproductive age being treated for cancer, cisplatin can lead to ovarian function impairment, premature ovarian failure (POF), and/or infertility. Therefore, reducing the adverse effects of cisplatin on ovarian function is an important topic in clinical research. In this paper, we explore the research progress on the POF caused by cisplatin treatment

    A Microscopic Mechanism for Muscle's Motion

    Full text link
    The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M. Nakano can explain the muscle's motion perfectly, but the intermolecular potential between myosin head and G-actin is too simple and only repulsive potential is considered. In this paper we study the SIRM with different complex potential and discuss the effect of the spring on the system. The calculation results show that the spring, the effective radius of the G-actin and the intermolecular potential play key roles in the motion. The sliding speed is about 4.7×10−6m/s4.7\times10^{-6}m/s calculated from the model which well agrees with the experimental data.Comment: 9 pages, 6 figure
    • 

    corecore