14,525 research outputs found

    Deduction of the quantum numbers of low-lying states of 6-nucleon systems based on symmetry

    Get PDF
    The inherent nodal structures of the wavefunctions of 6-nucleon systems have been investigated. The existence of a group of six low-lying states dominated by L=0 has been deduced. The spatial symmetries of these six states are found to be mainly {4,2} and {2,2,2}.Comment: 8 pages, no figure

    Improved Simulation of the Mass Charging for ASTROD I

    Full text link
    The electrostatic charging of the test mass in ASTROD I (Astrodynamical Space Test of Relativity using Optical Devices I) mission can affect the quality of the science data as a result of spurious Coulomb and Lorentz forces. To estimate the size of the resultant disturbances, credible predictions of charging rates and the charging noise are required. Using the GEANT4 software toolkit, we present a detailed Monte Carlo simulation of the ASTROD I test mass charging due to exposure of the spacecraft to galactic cosmic-ray (GCR) protons and alpha particles (3He, 4He) in the space environment. A positive charging rate of 33.3 e+/s at solar minimum is obtained. This figure reduces by 50% at solar maximum. Based on this charging rate and factoring in the contribution of minor cosmic-ray components, we calculate the acceleration noise and stiffness associated with charging. We conclude that the acceleration noise arising from Coulomb and Lorentz effects are well below the ASTROD I acceleration noise limit at 0.1 mHz both at solar minimum and maximum. The coherent Fourier components due to charging are investigated, it needs to be studied carefully in order to ensure that these do not compromise the quality of science data in the ASTROD I mission.Comment: 20 pages, 14 figures, submitted to International Journal of Modern Physics

    Incommensurate magnetic structure of CeRhIn5

    Full text link
    The magnetic structure of the heavy fermion antiferromagnet CeRhIn5 is determined using neutron diffraction. We find a magnetic wave vector q_M=(1/2,1/2,0.297), which is temperature independent up to T_N=3.8K. A staggered moment of 0.374(5) Bohr magneton at 1.4K, residing on the Ce ion, spirals transversely along the c axis. The nearest neighbor moments on the tetragonal basal plane are aligned antiferromagnetically.Comment: 4 pages, 4 figures There was an extra factor of 2 in Eq (2). This affects the value of staggered moment. The correct staggered moment is 0.374(5) Bohr magneton at 1.4

    Unconventional spin texture of a topologically nontrivial semimetal Sb(110)

    Get PDF
    The surfaces of antimony are characterized by the presence of spin-split states within the projected bulk band gap and the Fermi contour is thus expected to exhibit a spin texture. Using spin-resolved density functional theory calculations, we determine the spin polarization of the surface bands of Sb(110). The existence of the unconventional spin texture is corroborated by the investigations of the electron scattering on this surface. The charge interference patterns formed around single scattering impurities, imaged by scanning tunneling microscopy, reveal the absence of direct backscattering signal. We identify the allowed scattering vectors and analyze their bias evolution in relation to the surface-state dispersion.Comment: 10 pages, 5 figure

    Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    Full text link
    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high energy region where the relativistic impulse approximation is applicable.Comment: 13 pages, 6 figure

    Generic Constraints on the Relativistic Mean-Field and Skyrme-Hartree-Fock Models from the Pure Neutron Matter Equation of State

    Full text link
    We study the nuclear symmetry energy S(rho) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state (EoS) obtained from ab-initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of <~2 MeV and <~6 MeV respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter K_tau, (c) the symmetry energy at supra-saturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J, L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30<~J<~31.5 MeV, 35<~L<~60 MeV, -330<~K_tau<~-216 MeV for the RMF model as a whole and 30<~J<~33 MeV, 28<~L<~65 MeV, -420<~K_tau<~-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on K_tau inferred from giant monopole resonance and neutron skin experimental results.Comment: 15 pages, 7 figures, 4 table
    corecore