293 research outputs found

    Review of group A rotavirus strains reported in swine and cattle

    Get PDF
    Group A rotavirus (RVA) infections cause severe economic losses in intensively reared livestock animals, particularly in herds of swine and cattle. RVA strains are antigenically heterogeneous, and are classified in multiple G and P types defined by the two outer capsid proteins, VP7 and VP4, respectively. This study summarizes published literature on the genetic and antigenic diversity of porcine and bovine RVA strains published over the last 3 decades. The single most prevalent genotype combination among porcine RVA strains was G5P[7], whereas the predominant genotype combination among bovine RVA strains was G6P[5], although spatiotemporal differences in RVA strain distribution were observed. These data provide important baseline data on epidemiologically important RVA strains in swine and cattle and may guide the development of more effective vaccines for veterinary use

    Abiotic stress response of near-isogenic spring durum wheat lines under different sowing densities

    Get PDF
    A detailed study was made of changes in the plant development, morphology, physiology and yield biology of near-isogenic lines of spring durum wheat sown in the field with different plant densities in two consecutive years (2013–2014). An analysis was made of the drought tolerance of isogenic lines selected for yield QTLs (QYld.idw-2B and QYld.idw-3B), and the presence of QTL effects was examined in spring sowings. Comparisons were made of the traits of the isogenic pairs QYld.idw-3B++ and QYld.idw-3B−− both within and between the pairs. Changes in the polyamine content, antioxidant enzyme activity, chlorophyll content of the flag leaf and the normalized difference vegetation index (NDVI) of the plot were monitored in response to drought stress, and the relationship between these components and the yield was analyzed. In the case of moderate stress, differences between the NIL++ and NIL−− pairs appeared in the early dough stage, indicating that the QYld.idw-3B++ QTL region was able to maintain photosynthetic activity for a longer period, resulting in greater grain number and grain weight at the end of the growing period. The chlorophyll content of the flag leaf in phenophases Z77 and Z83 was significantly correlated with the grain number and grain weight of the main spike. The grain yield was greatly influenced by the treatment, while the genotype had a significant effect on the thousand-kernel weight and on the grain number and grain weight of the main spike. When the lines were compared in the non-irrigated treatment, significantly more grains and significantly higher grain weight were observed in the main spike in NIL++ lines, confirming the theory that the higher yields of the QYld.idw-3B++ lines when sown in spring and exposed to drought stress could be attributed to the positive effect of the “Kofa” QTL on chromosome 3B

    Genetic heterogeneity and recombination in human type 2 astroviruses

    Get PDF
    Novel lineages of human astrovirus (HAstV) types 2, 2c, and 2d have been identified. Upon sequencing of the 3= end of the genome, the type 2c and 2d HAstVs were found to be open reading frame 1b (ORF1b)-ORF2 recombinant, with ORF1b being derived from type 3 and type 1 HAstVs, respectively. An ORF2 interlineage recombinant strain, 2c/2b, was also identified

    Genomic characterization of a novel group A lamb rotavirus isolated in Zaragoza, Spain

    Get PDF
    An ovine rotavirus (OVR) strain, 762, was isolated from a 30-day-old lamb affected with severe gastroenteritis, in Zaragoza, Spain, and the VP4, VP7, VP6, NSP4, and NSP5/NSP6 genes were subsequently characterized molecularly. Strain OVR762 was classified as a P[14] rotavirus, as the VP4 and VP8* trypsin-cleavage product of the VP4 protein revealed the highest amino acid (aa) identity (94% and 97%, respectively) with that of the P11[14] human rotavirus (HRV) strain PA169, isolated in Italy. Analysis of the VP7 gene product revealed that OVR762 possessed G8 serotype specificity, a type common in ruminants, with the highest degree of aa identity(95–98%) shared with serotype G8 HRV, bovine rotavirus, and guanaco (Lama guanicoe) rotavirus strains. Moreover, strain OVR762 displayed a bovine-like NSP4 (genotype E2) and NSP5/NSP6 (genotype H3), and a VP6 genotype I2, as well as a long electropherotype pattern. This is the first report of a lamb rotavirus with P[14] and G8 specificities, providing additional evidence for the wide genetic and antigenic diversity of group A rotaviruses

    Molecular detection of canine bufaviruses in wild canids

    Get PDF
    Novel protoparvoviruses genetically related to human and non-human primate bufaviruses (BuVs) have been detected recently in respiratory and enteric specimens collected from dogs and cats. In this study, by molecular screening of archival collections of faecal samples from wolves and foxes, we detected BuVs with a rate of 17.1% (7/41) and 10.5% (9/86), respectively. Sequence analysis of a portion of the ORF2 gene region of nine positive samples showed that the viruses in these samples were closely related to BuVs (97.5–99.0% nucleotide sequence identity) found in domestic carnivores

    Space-time versus particle-hole symmetry in quantum Enskog equations

    Get PDF
    The non-local scattering-in and -out integrals of the Enskog equation have reversed displacements of colliding particles reflecting that the -in and -out processes are conjugated by the space and time inversions. Generalisations of the Enskog equation to Fermi liquid systems are hindered by a request of the particle-hole symmetry which contradicts the reversed displacements. We resolve this problem with the help of the optical theorem. It is found that space-time and particle-hole symmetry can only be fulfilled simultaneously for the Bruckner-type of internal Pauli-blocking while the Feynman-Galitskii form allows only for particle-hole symmetry but not for space-time symmetry due to a stimulated emission of Bosons

    Genetic heterogeneity of porcine enteric caliciviruses identified from diarrhoeic piglets

    Get PDF
    Enteric caliciviruses (noroviruses and sapoviruses) are responsible for the majority of non-bacterial gastroenteritis in humans of all age groups. Analysis of the polymerase and capsid genes has provided evidence for a huge genetic diversity, but the understanding of their ecology is limited. In this study, we investigated the presence of porcine enteric caliciviruses in the faeces of piglets with diarrhoea. A total of 209 samples from 118 herds were analyszd and calicivirus RNA was detected by RT-PCR in 68 sample (32.5%) and in 46 herds (38.9%), alone or in mixed infection with group A and C rotaviruses. Sequence and phylogenetic analysis of the calicivirus-positive samples characterized the majority as genogroup III (GGIII) sapoviruses. Unclassified caliciviruses, distantly related to the representatives of the other sapovirus genogroups, were identified in five herds, while one outbreak was associated with a porcine sapovirus related genetically to human GGII and GGIV sapovirus strains. By converse, norovirus strains were not detected. Altogether, these data suggest the epidemiological relevance of porcine enteric caliciviruses and suggest a role in the etiology of piglets diarrhoe

    Probing Interband Coulomb Interactions in Semiconductor Nanocrystals with 2D Double-Quantum Coherence Spectroscopy

    Full text link
    Using previously developed exciton scattering model accounting for the interband, i.e., exciton-biexciton, Coulomb interactions in semiconductor nanocrystals (NCs), we derive a closed set of equations for 2D double-quantum coherence signal. The signal depends on the Liouville space pathways which include both the interband scattering processes and the inter- and intraband optical transitions. These processes correspond to the formation of different cross-peaks in the 2D spectra. We further report on our numerical calculations of the 2D signal using reduced level scheme parameterized for PbSe NCs. Two different NC excitation regimes considered and unique spectroscopic features associated with the interband Coulomb interactions are identified.Comment: 11 pages, 5 figure

    An outbreak of neonatal enteritis in buffalo calves associated with astrovirus

    Get PDF
    Background: Enteritis of an infectious origin is a major cause of productivity and economic losses to cattle producers worldwide. Several pathogens are believed to cause or contribute to the development of calf diarrhea. Astroviruses (AstVs) are neglected enteric pathogens in ruminants, but they have recently gained attention because of their possible association with encephalitis in humans and various animal species, including cattle. Objectives: This paper describes a large outbreak of neonatal diarrhea in buffalo calves (Bubalus bubalis), characterized by high mortality, which was associated with an AstV infection. Methods: Following an enteritis outbreak characterized by high morbidity (100%) and mortality (46.2%) in a herd of Mediterranean buffaloes (B. bubalis) in Italy, 16 samples from buffalo calves were tested with the molecular tools for common and uncommon enteric pathogens, including AstV, kobuvirus, and torovirus. Results: The samples tested negative for common enteric viral agents, including Rotavirus A, coronavirus, calicivirus, pestivirus, kobuvirus, and torovirus, while they tested positive for AstV. Overall, 62.5% (10/16) of the samples were positive in a single round reverse transcription polymerase chain reaction (PCR) assay for AstV, and 100% (16/16) were positive when nested PCR was performed. The strains identified in the outbreak showed a clonal origin and shared the closest genetic relationship with bovine AstVs (up to 85% amino acid identity in the capsid). Conclusions: This report indicates that AstVs should be included in a differential diagnosis of infectious diarrhea in buffalo calves

    Multiexcitons confined within a sub-excitonic volume: Spectroscopic and dynamical signatures of neutral and charged biexcitons in ultrasmall semiconductor nanocrystals

    Full text link
    The use of ultrafast gating techniques allows us to resolve both spectrally and temporally the emission from short-lived neutral and negatively charged biexcitons in ultrasmall (sub-10 nm) CdSe nanocrystals (nanocrystal quantum dots). Because of forced overlap of electronic wave functions and reduced dielectric screening, these states are characterized by giant interaction energies of tens (neutral biexcitons) to hundreds (charged biexcitons) of meV. Both types of biexcitons show extremely short lifetimes (from sub-100 picoseconds to sub-picosecond time scales) that rapidly shorten with decreasing nanocrystal size. These ultrafast relaxation dynamics are explained in terms of highly efficient nonradiative Auger recombination.Comment: 5 pages, 4 figures, to be published in Phys. Rev.
    corecore