15 research outputs found

    Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems

    Get PDF
    A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand

    SoilTrEC: A global initiative on critical zone research and integration

    No full text
    Soil is a complex natural resource that is considered non-renewable in policy frameworks, and it plays a key role in maintaining a variety of ecosystem services (ES) and life-sustaining material cycles within the Earth's Critical Zone (CZ). However, currently, the ability of soil to deliver these services is being drastically reduced in many locations, and global loss of soil ecosystem services is estimated to increase each year as a result of many different threats, such as erosion and soil carbon loss. The European Union Thematic Strategy for Soil Protection alerts policy makers of the need to protect soil and proposes measures to mitigate soil degradation. In this context, the European Commission-funded research project on Soil Transformations in European Catchments (SoilTrEC) aims to quantify the processes that deliver soil ecosystem services in the Earth's Critical Zone and to quantify the impacts of environmental change on key soil functions. This is achieved by integrating the research results into decision-support tools and applying methods of economic valuation to soil ecosystem services. In this paper, we provide an overview of the SoilTrEC project, its organization, partnerships and implementation. © 2013 Springer-Verlag Berlin Heidelberg

    Clinical and radiographic outcomes of posterolateral lumbar spine fusion in humans using recombinant human bone morphogenetic protein-2: an average five-year follow-up study

    No full text
    The objectives of this study were to determine whether recombinant human bone morphogenetic protein-2 (rhBMP-2) can be used as the sole stimulator of osteogenesis with success equal to an autologous graft in posterolateral lumbar fusion (PLF) at the same level and to describe the progress until bone union. This study included 11 patients who underwent PLF of L4-5. On the right side, only rhBMP-2, for which polylactic/glycolic acid (PLGA) was used as a carrier, was used, whereas, on the left side, autogenous bone was used. The bone union rate was 73 and 82% at 12 and 24 months after surgery, respectively, on the right BMP side, while the rate on the autogenous bone side was 91%. There was no statistically significant difference in the bone union rate. rhBMP-2 can be used as the sole source of osteogenesis with success equivalent to an autologous graft of the PLF
    corecore