642 research outputs found
A call to action: Addressing the reproductive health needs of women with drug-resistant tuberculosis
Although there is substantial risk to maternal and neonatal health in the situation of pregnancy during treatment for rifampicin-resistant tuberculosis (RR-TB), there is little evidence to guide clinicians as to how to manage this complexity. Of the 49 680 patients initiated on RR-TB treatment from 2009 to 2014 in South Africa, 47% were women and 80% of them were in their reproductive years (15 - 44). There is an urgent need for increased evidence of the safety of RR-TB treatment during pregnancy, increased access to contraception during RR-TB treatment, and inclusion of reproductive health in research on the prevention and treatment of TB
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Published versio
A Novel Hepatitis C Virus Genotyping Method Based on Liquid Microarray
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping
Recommended from our members
Measurement of beauty production via non-prompt charm hadrons in p–Pb collisions at sNN = 5.02 TeV
The production cross sections of D0, D+, and Λc+ hadrons originating from beauty-hadron decays (i.e. non-prompt) were measured for the first time at midrapidity in proton–lead (p–Pb) collisions at the center-of-mass energy per nucleon pair of sNN = 5.02 TeV. Nuclear modification factors (RpPb) of non-prompt D0, D+, and Λc+ are calculated as a function of the transverse momentum (pT) to investigate the modification of the momentum spectra measured in p–Pb collisions with respect to those measured in proton–proton (pp) collisions at the same energy. The RpPb measurements are compatible with unity and with the measurements in the prompt charm sector, and do not show a significant pT dependence. The pT-integrated cross sections and pT-integrated RpPb of non-prompt D0 and D+ mesons are also computed by extrapolating the visible cross sections down to pT = 0. The non-prompt D-meson RpPb integrated over pT is compatible with unity and with model calculations implementing modification of the parton distribution functions of nucleons bound in nuclei with respect to free nucleons. The non-prompt Λc+/D0 and D+/D0 production ratios are computed to investigate hadronisation mechanisms of beauty quarks into mesons and baryons. The measured ratios as a function of pT display a similar trend to that measured for charm hadrons in the same collision system
Recommended from our members
Medium-induced modification of groomed and ungroomed jet mass and angularities in Pb–Pb collisions at s NN = 5.02 Image 1
The ALICE Collaboration presents a new suite of jet substructure measurements in Pb–Pb and pp collisions at a center-of-mass energy per nucleon pair sNN=5.02 [Figure presented]. These measurements provide access to the internal structure of jets via the momentum and angle of their constituents, probing how the quark–gluon plasma modifies jets, an effect known as jet quenching. Jet grooming additionally removes soft wide-angle radiation to enhance perturbative accuracy and reduce experimental uncertainties. We report the groomed and ungroomed jet mass mjet and jet angularities λα κ using κ=1 and α>0. Charged-particle jets are reconstructed at midrapidity using the anti-kT algorithm with resolution parameter R=0.2. A narrowing of the jet mass and angularity distributions in Pb–Pb collisions with respect to pp is observed and is enhanced for groomed results, confirming modification of the jet core. By using consistent jet definitions and kinematic cuts between the mass and angularities for the first time, previous inconsistencies in the interpretation of quenching measurements are resolved, rectifying a hurdle for understanding how jet quenching arises from first principles and highlighting the importance of a well-controlled baseline. These results are compared with a variety of theoretical models of jet quenching, providing constraints on jet energy-loss mechanisms in the quark–gluon plasma
Recommended from our members
Measurement of the impact-parameter dependent azimuthal anisotropy in coherent ρ 0 photoproduction in Pb–Pb collisions at s NN = 5.02 TeV
This Letter presents the first measurement of the impact-parameter dependent angular anisotropy in the decay of coherently photoproduced ρ0 mesons. The ρ0 mesons are reconstructed through their decay into pion pairs. The measured anisotropy corresponds to the amplitude of the cos(2ϕ) modulation, where ϕ is the angle between the two vectors formed by the sum and the difference of the transverse momenta of the pions, respectively. The measurement was performed by the ALICE Collaboration at the LHC using data from ultraperipheral Pb–Pb collisions at a center-of-mass energy of sNN=5.02 TeV per nucleon pair. Different impact-parameter regions are selected by classifying the events in nuclear-breakup classes. The amplitude of the cos(2ϕ) modulation is found to increase by about one order of magnitude from large to small impact parameters. Theoretical calculations describe the measured cos(2ϕ) anisotropy and its impact-parameter dependence as the result of a quantum interference effect at the femtometer scale, arising from the ambiguity regarding which of the nuclei is the photon source in the interaction
Recommended from our members
Measurement of the production and elliptic flow of (anti)nuclei in Xe-Xe collisions at sNN=5.44 TeV
Measurements of (anti)deuteron and (anti)He3 production in the rapidity range |y|<0.5 as a function of the transverse momentum and event multiplicity in Xe-Xe collisions at a center-of-mass energy per nucleon-nucleon pair of sNN=5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)He3 yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe-Xe collisions and shows features similar to those already observed in Pb-Pb collisions, i.e., the mass ordering at low transverse momentum and the meson-baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe-Xe collisions. The extracted chemical freeze-out temperature Tchem=(154.2±1.1) MeV in Xe-Xe collisions is similar to that observed in Pb-Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations
Recommended from our members
Multiplicity dependence of ϒ production at forward rapidity in pp collisions at s = 13 TeV
The measurement of ϒ(1S), ϒ(2S), and ϒ(3S) yields as a function of the charged-particle multiplicity density, dNch/dη, using the ALICE experiment at the LHC, is reported in pp collisions at s= 13 TeV. The ϒ meson yields are measured at forward rapidity (2.
Recommended from our members
Azimuthal anisotropy of jet particles in p-Pb and Pb-Pb collisions at sNN = 5.02 TeV
The azimuthal anisotropy of particles associated with jets (jet particles) at midrapidity is measured for the first time in p-Pb and Pb-Pb collisions at sNN = 5.02 TeV down to transverse momentum (pT) of 0.5 GeV/c and 2 GeV/c, respectively, with ALICE. The results obtained in p-Pb collisions are based on a novel three-particle correlation technique. The azimuthal anisotropy coefficient v2 in high-multiplicity p-Pb collisions is positive, with a significance reaching 6.8σ at low pT, and its magnitude is smaller than in semicentral Pb-Pb collisions. In contrast to the measurements in Pb-Pb collisions, the v2 coefficient is also found independent of pT within uncertainties. Comparisons with the inclusive charged-particle v2 and with AMPT calculations are discussed. The predictions suggest that parton interactions play an important role in generating a non-zero jet-particle v2 in p-Pb collisions, even though they overestimate the reported measurement. These observations shed new insights on the understanding of the origin of the collective behaviour of jet particles in small systems such as p-Pb collisions, and provide significant stringent new constraints to models
Recommended from our members
Particle production as a function of charged-particle flattenicity in pp collisions at s=13 TeV
This paper reports the first measurement of the transverse momentum (pT) spectra of primary charged pions, kaons, (anti)protons, and unidentified particles as a function of the charged-particle flattenicity in pp collisions at s=13 TeV. Flattenicity is a novel event shape observable that is measured in the pseudorapidity intervals covered by the V0 detector, 2.8<η<5.1 and -3.7<η<-1.7. According to QCD-inspired phenomenological models, it shows sensitivity to multiparton interactions and is less affected by biases toward larger pT due to local multiplicity fluctuations in the V0 acceptance than multiplicity. The analysis is performed in minimum-bias (MB) as well as in high-multiplicity events up to pT=20 GeV/c. The event selection requires at least one charged particle produced in the pseudorapidity interval |η|<1. The measured pT distributions, average pT, kaon-to-pion and proton-to-pion particle ratios, presented in this paper, are compared to model calculations using pythia 8 based on color strings and EPOS LHC. The modification of the pT-spectral shapes in low-flattenicity events that have large event activity with respect to those measured in MB events develops a pronounced peak at intermediate pT (
- …
