543 research outputs found

    Constraints on discrete symmetries from anomaly cancellation in compactified superstring theories

    Full text link
    Compactified string theories give rise to discrete symmetries which are essential if they are to provide a realistic low energy theory. We find that in a class of four dimensional string theories these symmetries are constrained by similar conditions to those discrete anomaly cancellation conditions found in the case the discrete symmetry is a residue of a spontaneously broken gauge symmetry. Such conditions strongly constrain the allowed form of the low energy effective theory.Comment: 8 pages, OUTP-93-14

    QCD-supression by Black Hole Production at the LHC

    Full text link
    Possible consequences of the production of small black holes at the LHC for different scenarios with large extra dimensions are investigated. The effects from black hole production on some standard jet observables are examined, concentrating on the reduction of the QCD cross section. It is found that black hole production of partons interacting on a short enough distance indeed seem to generate a drastic drop in the QCD cross section. However from an experimental point of view this will in most cases be camouflaged by energetic radiation from the black holes

    Large N limit of Extremal Non-supersymmetric Black Holes

    Get PDF
    The large N limit of extremal non-supersymmetric Type-I five-dimensional string black holes is studied from the point of view of D-branes. We find that the agreement between the D-brane and the black-hole picture is due to an asymptotic restoration of supersymmetry in the large NN limit in which both pictures are compared. In that limit Type-I string perturbation theory is effectively embedded into a Type-IIB perturbation theory with unbroken supersymmetric charges whose presence guarantees the non-renormalization of mass and entropy as the effective couplings are increased. In this vein, we also study the near-horizon geometry of the Type-I black hole using D5-brane probes to find that the low energy effective action for the probe is identical to the corresponding one in the auxiliary Type-IIB theory in the large N limit.Comment: 25 pages, harvmac, typos corrected and references adde

    Unparticle Physics in the Moller Scattering

    Full text link
    We investigate the virtual effects of vector unparticles in the Moller scattering. We derive the analytic expression for scattering amplitudes with unpolarized beams. We obtain 95% confidence level limits on the unparticle couplings λV\lambda_{V} and λA\lambda_{A} with integrated luminosity of Lint=50,500fb1L_{int}=50, 500 fb^{-1} and s=100,300\sqrt{s}=100, 300 and 500 GeV energies. We show that limits on λV\lambda_{V} are more sensitive than λA\lambda_{A}.Comment: 10 pages, 5 figures, 4 table

    Mass Deformation of the Multiple M2 Branes Theory

    Full text link
    Based on recent developments, in this letter we study the one parameter deformation of 2+1 dimensional gauge theories with scale invariance and N = 8 supersymmetry, which is expected to be the field theory living on a stack of M2 branes. The deformed gauge theory is defined by a Lagrangian and is based on an infinite set of novel 3-algebras constructed by relaxing the assumption that the invariant metric is positive definite. Under the Higgs mechanism, we can obtain the D-branes world volume theory in the presence of background fluxes.Comment: 13pages, no figures, reference adde

    Matrix Compactification On Orientifolds

    Get PDF
    Generalizing previous results for orbifolds, in this paper we describe the compactification of Matrix model on an orientifold which is a quotient space as a Yang-Mills theory living on a quantum space. The information of the compactification is encoded in the action of the discrete symmetry group G on Euclidean space and a projective representation U of G. The choice of Hilbert space on which the algebra of U is realized as an operator algebra corresponds to the choice of a physical background for the compactification. All these data are summarized in the spectral triple of the quantum space.Comment: 28 pages, late

    Brane World Susy Breaking from String/M Theory

    Full text link
    String and M-theory realizations of brane world supersymmetry breaking scenarios are considered in which visible sector Standard Model fields are confined on a brane, with hidden sector supersymmetry breaking isolated on a distant brane. In calculable examples with an internal manifold of any volume the Kahler potential generically contains brane--brane non-derivative contact interactions coupling the visible and hidden sectors and is not of the no-scale sequestered form. This leads to non-universal scalar masses and without additional assumptions about flavor symmetries may in general induce dangerous sflavor violation even though the Standard Model and supersymmetry branes are physically separated. Deviations from the sequestered form are dictated by bulk supersymmetry and can in most cases be understood as arising from exchange of bulk supergravity fields between branes or warping of the internal geometry. Unacceptable visible sector tree-level tachyons arise in many models but may be avoided in certain classes of compactifications. Anomaly mediated and gaugino mediated contributions to scalar masses are sub-dominant except in special circumstances such as a flat or AdS pure five--dimensional bulk geometry without bulk vector multiplets.Comment: Latex, 83 pages, references adde

    Modular Cosmology, Thermal Inflation, Baryogenesis and Predictions for Particle Accelerators

    Full text link
    Modular cosmology is plagued by overproduction of unwanted relics, gravitinos and especially moduli, at relatively low energy scales. Thermal inflation provides a compelling solution to this moduli problem, but invalidates most baryogenesis scenarios. We propose a simple model in which the MSSM plus neutrino mass term (LHu)2(LH_u)^2 is supplemented by a minimal flaton sector to drive the thermal inflation, and make two crucial assumptions: the flaton vacuum expectation value generates the μ\mu-term of the MSSM and mL2+mHu2<0m_L^2 + m_{H_u}^2 < 0. The second assumption is particularly interesting in that it violates a well known constraint, implying that there exists a nearby deep non-MSSM vacuum, and provides a clear signature of our model which can be tested at future particle accelerators. We show that our model leads to thermal inflation followed by Affleck-Dine leptogenensis along the LHuLH_u flat direction. A key feature of our leptogenesis scenario is that the HuHdH_uH_d flat direction is also induced to temporarily acquire a large value, playing a crucial role in the leptogenesis, as well as dynamically shielding the field configuration from the deep non-MSSM minimum, ensuring that the fields relax into our MSSM vacuum.Comment: v3; 19 pages, 3 figures; added a reference for section

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    Supersymmetric Unification Without Low Energy Supersymmetry And Signatures for Fine-Tuning at the LHC

    Full text link
    The cosmological constant problem is a failure of naturalness and suggests that a fine-tuning mechanism is at work, which may also address the hierarchy problem. An example -- supported by Weinberg's successful prediction of the cosmological constant -- is the potentially vast landscape of vacua in string theory, where the existence of galaxies and atoms is promoted to a vacuum selection criterion. Then, low energy SUSY becomes unnecessary, and supersymmetry -- if present in the fundamental theory -- can be broken near the unification scale. All the scalars of the supersymmetric standard model become ultraheavy, except for a single finely tuned Higgs. Yet, the fermions of the supersymmetric standard model can remain light, protected by chiral symmetry, and account for the successful unification of gauge couplings. This framework removes all the difficulties of the SSM: the absence of a light Higgs and sparticles, dimension five proton decay, SUSY flavor and CP problems, and the cosmological gravitino and moduli problems. High-scale SUSY breaking raises the mass of the light Higgs to about 120-150 GeV. The gluino is strikingly long lived, and a measurement of its lifetime can determine the ultraheavy scalar mass scale. Measuring the four Yukawa couplings of the Higgs to the gauginos and higgsinos precisely tests for high-scale SUSY. These ideas, if confirmed, will demonstrate that supersymmetry is present but irrelevant for the hierarchy problem -- just as it has been irrelevant for the cosmological constant problem -- strongly suggesting the existence of a fine-tuning mechanism in nature.Comment: Typos and equations fixed, references adde
    corecore