1,187 research outputs found
Pure spinor computation towards open string three-loop
Using the recent results in the pure spinor formulation, we lay out a
ground-work towards the full momentum space amplitudes of open superstrings at
three-loop. After briefly reviewing the one-loop amplitude, we directly work
out the two-loop and reproduce the result that was obtained by a symmetry
argument. For the three-loop, first we use the two-loop regulator as a warm-up
exercise. The result vanishes. We then employ the regulator that has been
recently proposed by Aisaka and Berkovits (AB). It is noted that the terms in
higher power in that render the two-loop
regulator disqualified for the three-loop do not contribute. This with a few
other indications suggests a possibility that the AB regulator might also lead
to a vanishing result. Nevertheless, we argue that it is possible to acquire
the three-loop amplitude, and present a result that we anticipate to be the
three-loop amplitude.Comment: 41 pages, latex, cosmetic change
Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter
We address the open question of performing an explicit stabilisation of all
closed string moduli (including dilaton, complex structure and Kaehler moduli)
in fluxed type IIB Calabi-Yau compactifications with chiral matter. Using toric
geometry we construct Calabi-Yau manifolds with del Pezzo singularities.
D-branes located at such singularities can support the Standard Model gauge
group and matter content. In order to control complex structure moduli
stabilisation we consider Calabi-Yau manifolds which exhibit a discrete
symmetry that reduces the effective number of complex structure moduli. We
calculate the corresponding periods in the symplectic basis of invariant
three-cycles and find explicit flux vacua for concrete examples. We compute the
values of the flux superpotential and the string coupling at these vacua.
Starting from these explicit complex structure solutions, we obtain AdS and dS
minima where the Kaehler moduli are stabilised by a mixture of D-terms,
non-perturbative and perturbative alpha'-corrections as in the LARGE Volume
Scenario. In the considered example the visible sector lives at a dP_6
singularity which can be higgsed to the phenomenologically interesting class of
models at the dP_3 singularity.Comment: 49 pages, 5 figures; v2: references adde
Machine and human observable differences in groups’ collaborative problem-solving behaviours
This paper contributes to our understanding of how to design learning analytics to capture and analyse collaborative problem-solving (CPS) in practice-based learning activities. Most research in learning analytics focuses on student interaction in digital learning environments, yet still most learning and teaching in schools occurs in physical environments. Investigation of student interaction in physical environments can be used to generate observable differences among students, which can then be used in the design and implementation of Learning Analytics. Here, we present several original methods for identifying such differences in groups CPS behaviours. Our data set is based on human observation, hand position (fiducial marker) and heads direction (face recognition) data from eighteen students working in six groups of three. The results show that the high competent CPS groups spend an equal distribution of time on their problem-solving and collaboration stages. Whereas, the low competent CPS groups spend most of their time in identifying knowledge and skill deficiencies only. Moreover, as machine observable data shows, high competent CPS groups present symmetrical contributions to the physical tasks and present high synchrony and individual accountability values. The findings have significant implications on the design and implementation of future learning analytics systems
Simplifying instanton corrections to N=4 SYM correlators
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited
Robot-assisted pancreatoduodenectomy with preservation of the vascular supply for autologous islet cell isolation and transplantation: a case report
<p>Abstract</p> <p>Introduction</p> <p>For patients with chronic pancreatitis presenting with medically intractable abdominal pain, surgical intervention may be the only treatment option. However, extensive pancreatic resections are typically performed open and are associated with a substantial amount of postoperative pain, wound complications and long recovery time. Minimally invasive surgery offers an avenue to improve results; however, current limitations of laparoscopic surgery render its application in the setting of chronic pancreatitis technically demanding. Additionally, pancreatic resections are associated with a high incidence of diabetes. Transplantation of islets isolated from the resected pancreas portion offers a way to prevent post-surgical diabetes; however, preservation of the vascular supply during pancreatic resection, which determines islet cell viability, is technically difficult using current laparoscopic approaches. With recent advances in the surgical field, robotic surgery now provides a means to overcome these obstacles to achieve the end goals of pain relief and preserved endocrine function. We present the first report of a novel, minimally invasive robotic approach for resection of the pancreatic head that preserves vascular supply and enables the isolation of a high yield of viable islets for transplantation.</p> <p>Case presentation</p> <p>A 35-year old Caucasian woman presented with intractable chronic abdominal pain secondary to chronic pancreatitis, with a stricture of her main pancreatic duct at the level of the ampulla of Vater and distal dilatation. She was offered a robotic-assisted pylorus-preserving pancreatoduodenectomy and subsequent islet transplantation, to both provide pain relief and preserve insulin-secretory reserves.</p> <p>Conclusion</p> <p>We present a novel, minimally invasive robotic approach for resection of the pancreatic head with complete preservation of the vascular supply, minimal warm ischemia time (less than three minutes) and excellent islet recovery (134,727 islet equivalent). Our patient is currently pain-free with normal glycemic control. Robot-assisted pylorus-preserving pancreatoduodenectomy and autologous islet transplantation can be safely performed and has the potential to minimize operative traumas as well as to partially preserve endocrine function. Results from this case report suggest that this dual procedure should be considered as a treatment option for patients with chronic pancreatitis at earlier stages of the disease, before irreversible islet loss occurs.</p
Draining sterile fluid collections in acute pancreatitis? Primum non nocere!
Contains fulltext :
95829.pdf (publisher's version ) (Open Access
Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects
Palaeoenvironmental DNA (PalEnDNA) is defined as ancient DNA (aDNA) originating from disseminated genetic material within palaeoenvironmental samples. Sources of PalEnDNA include marine and lake sediments, peat, loess, till, ice, permafrost, palaeosols, coprolites, preserved gut contents, dental calculus, tephras, and soils as well as deposits in caves/rockshelters and at archaeological sites. PalEnDNA analysis provides a relatively new tool for Quaternary and archaeological sciences and its applications have included palaeoenvironmental and palaeodietary reconstructions, testing hypotheses regarding megafaunal extinctions, human–environment interactions, taxonomic studies and studies of DNA damage. Because PalEnDNA samples comprise markedly different materials, and represent wide-ranging depositional and taphonomic contexts, various issues must be addressed to achieve robust, reproducible findings. Such issues include climatic and temporal limitations, the biological origin and state (free versus bound) of PalEnDNA, stratigraphic reliability, sterile sampling, ability to distinguish modern from aDNA signals, DNA damage and PCR amplification, DNA extraction methods, and taxonomic resolution. In this review, we provide a non-specialist introduction to the use of PalEnDNA for Quaternary and archaeological researchers, assess attributes and limitations of this palaeoenvironmental tool, and discuss future prospects of using PalEnDNA to reconstruct past environments
Looking through the QCD conformal window with perturbation theory
We study the conformal window of QCD using perturbation theory, starting from the perturbative upper edge and going down as much as we can towards the strongly coupled regime. We do so by exploiting the available five-loop
computation of the -function and employing Borel resummation techniques both for the ordinary perturbative series and for the Banks-Zaks conformal expansion. Large- results are also used. We argue that the perturbative series for the -function is most likely asymptotic and non-Borel resummable, yet Borel resummation techniques allow to improve on ordinary perturbation theory. We find
substantial evidence that QCD with flavours flows in the IR to a conformal field theory. Though the evidence is weaker, we find indications that also might sit within the conformal window. We also compute the value
of the mass anomalous dimension at the fixed point and compare it with the available lattice results. The conformal window might extend for lower values of , but our methods break down for n_f<11, where we expect that non-perturbative effects become important. A similar analysis is performed in the Veneziano limit
- …