227 research outputs found

    Learning environments

    Get PDF

    Phenomenology of the Little Higgs Model

    Full text link
    We study the low energy phenomenology of the little Higgs model. We first discuss the linearized effective theory of the "littlest Higgs model" and study the low energy constraints on the model parameters. We identify sources of the corrections to low energy observables, discuss model-dependent arbitrariness, and outline some possible directions of extensions of the model in order to evade the precision electroweak constraints. We then explore the characteristic signatures to test the model in the current and future collider experiments. We find that the LHC has great potential to discover the new SU(2) gauge bosons and the possible new U(1) gauge boson to the multi-TeV mass scale. Other states such as the colored vector-like quark T and doubly-charged Higgs boson Phi^{++} may also provide interesting signals. At a linear collider, precision measurements on the triple gauge boson couplings could be sensitive to the new physics scale of a few TeV. We provide a comprehensive list of the linearized interactions and vertices for the littlest Higgs model in the appendices.Comment: 43 pages, 6 figures; v2: discussion clarified, typos corrected; v3: version to appear in PRD; v4: typos fixed in Feynman rule

    Strengthening Biblical Historicity vis-a`-vis Minimalism, 1992–2008 and Beyond. Part 2.3: Some Commonalities in Approaches to Writing Ancient Israel’s History

    Get PDF
    This series of articles covers scholarly works in English which can, at least potentially, be associated with a generally positive view of biblical historicity regarding periods preceding the Israelites’ return from exile. Part 2 covers works that treat the methodological issues at the center of the maximalist–minimalist debate. Parts 2.1 and 2.2 selectively survey the works of 24 non-minimalist scholars during two decades. In the absence of consensus, this article analyzes the works in Parts 2.1 and 2.2, tracing elements of approach that are held in common, at least among pluralities of non-minimalists (possible majorities are not noted). The first commonality of approach is that history is provisional, not final. The second is that history should become fully multidisciplinary. The third commonality is that historians should receive all historical evidence on an equal footing before examination and cross-examination. The fourth and last is that historians should become increasingly sensitive to cultural aspects and coding in ancient Near Eastern materials

    Arizona\u27s Vulnerable Populations

    Get PDF
    Arizona’s vulnerable populations are struggling on a daily basis but usually do so in silence, undetected by traditional radar and rankings, often unaware themselves of their high risk for being pushed or pulled into a full crisis. Ineligible for financial assistance under strict eligibility guidelines, they don’t qualify as poor because vulnerable populations are not yet in full crisis. To be clear, this report is not about the “poor,” at least not in the limited sense of the word. It is about our underemployed wage earners, our single-parent households, our deployed or returning military members, our under-educated and unskilled workforce, our debt-ridden neighbors, our uninsured friends, our family members with no savings for an emergency, much less retirement

    The burden of cancer attributable to modifiable risk factors: The Australian cancer-PAF cohort consortium

    Get PDF
    Purpose To estimate the Australian cancer burden attributable to lifestyle-related risk factors and their combinations using a novel population attributable fraction (PAF) method that accounts for competing risk of death, risk factor interdependence and statistical uncertainty. Participants 365 173 adults from seven Australian cohort studies. We linked pooled harmonised individual participant cohort data with population-based cancer and death registries to estimate exposure-cancer and exposure-death associations. Current Australian exposure prevalence was estimated from representative external sources. To illustrate the utility of the new PAF method, we calculated fractions of cancers causally related to body fatness or both tobacco and alcohol consumption avoidable in the next 10 years by risk factor modifications, comparing them with fractions produced by traditional PAF methods. Findings to date Over 10 years of follow-up, we observed 27 483 incident cancers and 22 078 deaths. Of cancers related to body fatness (n=9258), 13% (95% CI 11% to 16%) could be avoided if those currently overweight or obese had body mass index of 18.5–24.9 kg/m2. Of cancers causally related to both tobacco and alcohol (n=4283), current or former smoking explains 13% (11% to 16%) and consuming more than two alcoholic drinks per day explains 6% (5% to 8%). The two factors combined explain 16% (13% to 19%): 26% (21% to 30%) in men and 8% (4% to 11%) in women. Corresponding estimates using the traditional PAF method were 20%, 31% and 10%. Our PAF estimates translate to 74 000 avoidable body fatness-related cancers and 40 000 avoidable tobacco- and alcohol-related cancers in Australia over the next 10 years (2017–2026). Traditional PAF methods not accounting for competing risk of death and interdependence of risk factors may overestimate PAFs and avoidable cancers. Future plans We will rank the most important causal factors and their combinations for a spectrum of cancers and inform cancer control activities.This study was funded by the National Health and Medical Research Council (ID1060991; ID1053642 to MAL; ID1082989 to KC; ID1042717 to EB) and a Cancer Institute New South Wales Fellowship (ID13/ECF/1-07 to MAL). Maria Arriaga was supported by Australian Postgraduate Award and a Translational Cancer Research Network (TCRN) PhD Scholarship Top-up Award

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore