95 research outputs found

    The charmonium and bottomonium mass spectroscopy with a simple approximaton of the kinetic term

    Get PDF
    In this paper we propose a particular description of meson spectroscopy, with emphasis in heavy bound states like charmonia and bottomonia, after working on the main aspects of the construction of an effective potential model. We use the prerogatives from ``soft QCD'' to determine the effective potential terms, establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in agreement with QCD and phenomenological prescription. The main aspect of this work is the simplification in the calculation, consequence of a precise and simplified description of the kinetic term of the Hamiltonian. With this proposition we perform the calculations of mass spectroscopy for charmonium and bottomonium mesons and we discuss the real physical possibilities of developing a generalized potential model, its possible advantages relative to experimental parameterization and complexity in numerical calculations

    Electrospray Ionization Mass Spectrometry Fingerprinting Of Propolis.

    Get PDF
    Crude ethanolic extracts of propolis, a natural resin, have been directly analysed using electrospray ionization mass (ESI-MS) and tandem mass spectrometry (ESI-MS/MS) in the negative ion mode. European, North American and African samples have been analyzed, but emphasis has been given to Brazilian propolis which displays diverse and region-dependent chemical composition. ESI-MS provides characteristic fingerprint mass spectra, with propolis samples being divided into well-defined groups directly related to their geographical origins. Chemometric multivariate analysis statistically demonstrates the reliability of the ESI-MS fingerprinting method for propolis. On-line ESI-MS/MS tandem mass spectrometry of characteristic [M - H](-) ion markers provides an additional dimension of fingerprinting selectivity, while structurally characterizing the ESI-MS marker components of propolis. By comparison with standards, eight such markers have been identified: para-coumaric acid, 3-methoxy-4-hydroxycinnamaldehyde, 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran, 3-prenyl-4-hydroxycinnamic acid, chrysin, pinocembrin, 3,5-diprenyl-4-hydroxycinnamic acid and dicaffeoylquinic acid. The negative mode ESI-MS fingerprinting method is capable of discerning distinct composition patterns to typify, to screen the sample origin and to reveal characteristic details of the more polar and acidic chemical components of propolis samples from different regions of the world.129739-4

    Bioassay guided purification of the antimicrobial fraction of a Brazilian propolis from Bahia state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brazilian propolis type 6 (Atlantic forest, Bahia) is distinct from the other types of propolis especially due to absence of flavonoids and presence of other non-polar, long chain compounds, but presenting good <it>in vitro </it>and <it>in vivo </it>antimicrobial activity. Several authors have suggested that fatty acids found in this propolis might be responsible for its antimicrobial activity; however, so far no evidence concerning this finding has been reported in the literature. The goals of this study were to evaluate the antibacterial activity of the main pure fatty acids in the ethanolic extract and fractions and elucidate the chemical nature of the bioactive compounds isolated from Brazilian propolis type 6.</p> <p>Methods</p> <p>Brazilian propolis type 6 ethanolic extract (EEP), hexane fraction (H-Fr), major fatty acids, and isolated sub-fractions were analyzed using high performance liquid chromatography (HPLC), high resolution gas chromatography with flame ionization detection (HRGC-FID), and gas chromatography-mass spectrometry (GC-MS). Three sub-fractions of H-Fr were obtained through preparative HPLC. Antimicrobial activity of EEP, H-Fr, sub-fractions, and fatty acids were tested against <it>Staphyloccus aureus </it>ATCC 25923 and <it>Streptococcus mutans </it>Ingbritt 1600 using minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC).</p> <p>Results</p> <p>EEP and H-Fr inhibited the growth of the microorganisms tested; nevertheless, no antimicrobial activity was found for the major fatty acids. The three sub-fractions (1, 2, and 3) were isolated from H-Fr by preparative HPLC and only sub-fraction 1 showed antimicrobial activity.</p> <p>Conclusion</p> <p>a) The major fatty acids tested were not responsible for the antimicrobial activity of propolis type 6; b) Sub-fraction 1, belonging to the benzophenone class, was responsible for the antimicrobial activity observed in the present study. The identification of the bioactive compound will improve the development of more efficient uses of this natural product.</p

    The chemical characterization of Nigerian propolis samples and their activity against Trypanosoma brucei.

    Get PDF
    Profiling of extracts from twelve propolis samples collected from eight regions in Nigeria was carried out using high performance liquid chromatography (LC) coupled with evaporative light scattering (ELSD), ultraviolet detection (UV) and mass spectrometry (MS), gas chromatography mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). Principal component analysis (PCA) of the processed LC-MS data demonstrated the varying chemical composition of the samples. Most of the samples were active against Trypanosoma b.brucei with the highest activity being in the samples from Southern Nigeria. The more active samples were fractionated in order to isolate the component(s) responsible for their activity using medium pressure liquid chromatography (MPLC). Three xanthones, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone, 1,3,7-trihydroxy-4,8-di-(3-methylbut-2-enyl)xanthone a previously undescribed xanthone and three triterpenes: ambonic acid, mangiferonic acid and a mixture of α-amyrin with mangiferonic acid (1:3) were isolated and characterised by NMR and LC-MS. These compounds all displayed strong inhibitory activity against T.b.brucei but none of them had higher activity than the crude extracts. Partial least squares (PLS) modelling of the anti-trypanosomal activity of the sample extracts using the LC-MS data indicated that high activity in the extracts, as judged from LCMS 2data, could be correlated to denticulatain isomers in the extracts
    corecore