89 research outputs found
Improving levodopa delivery: IPX203, a novel extended-release carbidopa-levodopa formulation.
INTRODUCTION: IPX203 is a novel oral extended-release (ER) formulation of carbidopa (CD) and levodopa (LD) developed to address the short half-life and limited area for absorption of LD in the gastrointestinal tract. This paper presents the formulation strategy of IPX203 and its relationship to the pharmacokinetics (PK) and pharmacodynamic profile of IPX203 in Parkinson\u27s disease (PD) patients.
METHODS: IPX203 was developed with an innovative technology containing immediate-release (IR) granules and ER beads that provides rapid LD absorption to achieve desired plasma concentration and maintaining it within the therapeutic range for longer than can be achieved with current oral LD formulations. The PK and pharmacodynamics of IPX203 were compared with IR CD-LD in a Phase 2, open-label, rater-blinded, multicenter, crossover study in patients with advanced PD.
RESULTS: Pharmacokinetic data showed that on Day 15, LD concentrations were sustained above 50% of peak for 6.2 h with IPX203 vs. 3.9 h with IR CD-LD (P = 0.0002). Pharmacodynamic analysis demonstrated that mean MDS-UPDRS Part III scores prior to administration of the first daily dose were significantly lower among patients receiving IPX203 than IR CD-LD (LS mean difference –8.1 [25.0], P = 0.0255). In a study conducted in healthy volunteers, a high-fat, high-calorie meal delayed plasma LD Tmax by 2 h, and increased Cmax and AUCtau by approximately 20% compared with a fasted state. Sprinkling capsule contents on applesauce did not affect PK parameters.
CONCLUSION: These data confirm that the unique design of IPX203 addresses some of the limitations of oral LD delivery
A Novel Approach to the Common Due-Date Problem on Single and Parallel Machines
This paper presents a novel idea for the general case of the Common Due-Date
(CDD) scheduling problem. The problem is about scheduling a certain number of
jobs on a single or parallel machines where all the jobs possess different
processing times but a common due-date. The objective of the problem is to
minimize the total penalty incurred due to earliness or tardiness of the job
completions. This work presents exact polynomial algorithms for optimizing a
given job sequence for single and identical parallel machines with the run-time
complexities of for both cases, where is the number of jobs.
Besides, we show that our approach for the parallel machine case is also
suitable for non-identical parallel machines. We prove the optimality for the
single machine case and the runtime complexities of both. Henceforth, we extend
our approach to one particular dynamic case of the CDD and conclude the chapter
with our results for the benchmark instances provided in the OR-library.Comment: Book Chapter 22 page
TLR7-mediated skin inflammation remotely triggers chemokine expression and leukocyte accumulation in the brain
Background:
The relationship between the brain and the immune system has become increasingly topical as, although it is immune-specialised, the CNS is not free from the influences of the immune system. Recent data indicate that peripheral immune stimulation can significantly affect the CNS. But the mechanisms underpinning this relationship remain unclear. The standard approach to understanding this relationship has relied on systemic immune activation using bacterial components, finding that immune mediators, such as cytokines, can have a significant effect on brain function and behaviour. More rarely have studies used disease models that are representative of human disorders.
Methods:
Here we use a well-characterised animal model of psoriasis-like skin inflammation—imiquimod—to investigate the effects of tissue-specific peripheral inflammation on the brain. We used full genome array, flow cytometry analysis of immune cell infiltration, doublecortin staining for neural precursor cells and a behavioural read-out exploiting natural burrowing behaviour.
Results:
We found that a number of genes are upregulated in the brain following treatment, amongst which is a subset of inflammatory chemokines (CCL3, CCL5, CCL9, CXCL10, CXCL13, CXCL16 and CCR5). Strikingly, this model induced the infiltration of a number of immune cell subsets into the brain parenchyma, including T cells, NK cells and myeloid cells, along with a reduction in neurogenesis and a suppression of burrowing activity.
Conclusions:
These findings demonstrate that cutaneous, peripheral immune stimulation is associated with significant leukocyte infiltration into the brain and suggest that chemokines may be amongst the key mediators driving this response
Glioblastoma cellular cross-talk converges on NF-κB to attenuate EGFR inhibitor sensitivity
Funding Information: We thank Dr. David James, Dr. Frederick Lang, Dr. Cameron Brennan, and Dr. Harley Kornblum for GBM-PDX neurospheres. We thank Dr. Karen Arden for continuous support and critical evaluation of the results. We thank Dr. Robert Davis, Dr. German Gomez, Dr. Tiffany Taylor, Dr. Rachel Reed, Dr. Melissa Mcalonis, and Dr. Sora Lee for technical support. In memory of Rosa Lupo. This work was supported by the Defeat GBM Research Collaborative, a subsidiary of the National Brain Tumor Society (F.B.F. and P.S.M.), R01-NS080939 (F.B.F.), the James S. McDonnell Foundation (F.B.F.), the National Cancer Institute (2T32CA009523-29A1) (A.H.T), and 1RO1NS097649-01 (C.C.C.). C.Z. was partially supported by an American-Italian Cancer Foundation post-doctoral research fellowship. F.L. received a Gao Feng Gao Yuan Scholarship Award. T.C.G., A.K.S., P.S.M., W.K.C., and F.B.F. receive salary and additional support from the Ludwig Institute for Cancer Research. Publisher Copyright: © 2017 Zanca et al.In glioblastoma (GBM), heterogeneous expression of amplified and mutated epidermal growth factor receptor (EGFR) presents a substantial challenge for the effective use of EGFR-directed therapeutics. Here we demonstrate that heterogeneous expression of the wild-type receptor and its constitutively active mutant form, EGFRvIII, limits sensitivity to these therapies through an interclonal communication mechanism mediated by interleukin-6 (IL-6) cytokine secreted from EGFRvIII-positive tumor cells. IL-6 activates a NF-κB signaling axis in a paracrine and autocrine manner, leading to bromodomain protein 4 (BRD4)-dependent expression of the prosurvival protein survivin (BIRC5) and attenuation of sensitivity to EGFR tyrosine kinase inhibitors (TKIs). NF-κB and survivin are coordinately up-regulated in GBM patient tumors, and functional inhibition of either protein or BRD4 in in vitro and in vivo models restores sensitivity to EGFR TKIs. These results provide a rationale for improving anti-EGFR therapeutic efficacy through pharmacological uncoupling of a convergence point of NF-κB-mediated survival that is leveraged by an interclonal circuitry mechanism established by intratumoral mutational heterogeneity.publishersversionPeer reviewe
Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction
Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leukocytes into the CNS, only few studies describe chemokine expression in neurons. Nevertheless, the expression of neuronal chemokines and the corresponding chemokine receptors in CNS cells under physiological and pathological conditions indicates that neuronal chemokines contribute to CNS cell interaction. In this study, we review recent studies describing neuronal chemokine expression and discuss potential roles of neuronal chemokines in neuron–astrocyte, neuron–microglia, and neuron–neuron interaction
Geminin-Deficient Neural Stem Cells Exhibit Normal Cell Division and Normal Neurogenesis
Neural stem cells (NSCs) are the progenitors of neurons and glial cells during both embryonic development and adult life. The unstable regulatory protein Geminin (Gmnn) is thought to maintain neural stem cells in an undifferentiated state while they proliferate. Geminin inhibits neuronal differentiation in cultured cells by antagonizing interactions between the chromatin remodeling protein Brg1 and the neural-specific transcription factors Neurogenin and NeuroD. Geminin is widely expressed in the CNS during throughout embryonic development, and Geminin expression is down-regulated when neuronal precursor cells undergo terminal differentiation. Over-expression of Geminin in gastrula-stage Xenopus embryos can expand the size of the neural plate. The role of Geminin in regulating vertebrate neurogenesis in vivo has not been rigorously examined. To address this question, we created a strain of Nestin-Cre/Gmnnfl/fl mice in which the Geminin gene was specifically deleted from NSCs. Interestingly, we found no major defects in the development or function of the central nervous system. Neural-specific GmnnΔ/Δ mice are viable and fertile and display no obvious neurological or neuroanatomical abnormalities. They have normal numbers of BrdU+ NSCs in the subgranular zone of the dentate gyrus, and GmnnΔ/Δ NSCs give rise to normal numbers of mature neurons in pulse-chase experiments. GmnnΔ/Δ neurosphere cells differentiate normally into both neurons and glial cells when grown in growth factor-deficient medium. Both the growth rate and the cell cycle distribution of cultured GmnnΔ/Δ neurosphere cells are indistinguishable from controls. We conclude that Geminin is largely dispensable for most of embryonic and adult mammalian neurogenesis
Regulation of Motor Function and Behavior by Atypical Chemokine Receptor 1
The final publication is available at Springer via http://dx.doi.org/10.1007/s10519-014-9665-7Atypical Chemokine Receptor 1 (ACKR1), previously known as the Duffy Antigen Receptor for Chemokines, stands out among chemokine receptors for its high selective expression on Purkinje cells of the cerebellum, consistent with the ability of ACKR1 ligands to activate Purkinje cells in vitro. Nevertheless, evidence for ACKR1 regulation of brain function in vivo has been lacking. Here we demonstrate that Ackr1−/− mice have markedly impaired balance and ataxia when placed on a rotating rod and increased tremor when injected with harmaline, a drug that induces whole-body tremor by activating Purkinje cells. Ackr1−/− mice also exhibited impaired exploratory behavior, increased anxiety-like behavior and frequent episodes of marked hypoactivity under low-stress conditions. The behavioral phenotype of Ackr1−/− mice was the opposite of the phenotype occurring in mice with cerebellar degeneration and the defects persisted when Ackr1 was deficient only on non-hematopoietic cells. We conclude that normal motor function and behavior depend in part on negative regulation of Purkinje cell activity by Ackr1
HIV-1 Nef Protein Structures Associated with Brain Infection and Dementia Pathogenesis
The difference between regional rates of HIV-associated dementia (HAD) in patients infected with different subtypes of HIV suggests that genetic determinants exist within HIV that influence the ability of the virus to replicate in the central nervous system (in Uganda, Africa, subtype D HAD rate is 89%, while subtype A HAD rate is 24%). HIV-1 nef is a multifunctional protein with known toxic effects in the brain compartment. The goal of the current study was to identify if specific three-dimensional nef structures may be linked to patients who developed HAD. HIV-1 nef structures were computationally derived for consensus brain and non-brain sequences from a panel of patients infected with subtype B who died due to varied disease pathologies and consensus subtype A and subtype D sequences from Uganda. Site directed mutation analysis identified signatures in brain structures that appear to change binding potentials and could affect folding conformations of brain-associated structures. Despite the large sequence variation between HIV subtypes, structural alignments confirmed that viral structures derived from patients with HAD were more similar to subtype D structures than to structures derived from patient sequences without HAD. Furthermore, structures derived from brain sequences of patients with HAD were more similar to subtype D structures than they were to their own non-brain structures. The potential finding of a brain-specific nef structure indicates that HAD may result from genetic alterations that alter the folding or binding potential of the protein
Single Nucleotide Polymorphism in Gene Encoding Transcription Factor Prep1 Is Associated with HIV-1-Associated Dementia
BACKGROUND: Infection with HIV-1 may result in severe cognitive and motor impairment, referred to as HIV-1-associated dementia (HAD). While its prevalence has dropped significantly in the era of combination antiretroviral therapy, milder neurocognitive disorders persist with a high prevalence. To identify additional therapeutic targets for treating HIV-associated neurocognitive disorders, several candidate gene polymorphisms have been evaluated, but few have been replicated across multiple studies. METHODS: We here tested 7 candidate gene polymorphisms for association with HAD in a case-control study consisting of 86 HAD cases and 246 non-HAD AIDS patients as controls. Since infected monocytes and macrophages are thought to play an important role in the infection of the brain, 5 recently identified single nucleotide polymorphisms (SNPs) affecting HIV-1 replication in macrophages in vitro were also tested. RESULTS: The CCR5 wt/Δ32 genotype was only associated with HAD in individuals who developed AIDS prior to 1991, in agreement with the observed fading effect of this genotype on viral load set point. A significant difference in genotype distribution among all cases and controls irrespective of year of AIDS diagnosis was found only for a SNP in candidate gene PREP1 (p = 1.2 × 10(-5)). Prep1 has recently been identified as a transcription factor preferentially binding the -2,518 G allele in the promoter of the gene encoding MCP-1, a protein with a well established role in the etiology of HAD. CONCLUSION: These results support previous findings suggesting an important role for MCP-1 in the onset of HIV-1-associated neurocognitive disorders
- …