15 research outputs found

    Insights from a Convocation: Integrating Discovery-Based Research into the Undergraduate Curriculum

    Get PDF
    The National Academies of Sciences, Engineering, and Medicine organized a convocation in 2015 to explore and elucidate opportunities, barriers, and realities of course-based undergraduate research experiences, known as CUREs, as a potentially integral component of undergraduate science, technology, engineering, and mathematics education. This paper summarizes the convocation and resulting report

    Faculty Perspectives on Developing and Teaching Course-Based Undergraduate Research Experiences

    No full text
    National calls for the transformation of undergraduate biology education have recommended the integration of research experiences into the undergraduate curriculum. Course-based undergraduate research experiences (CUREs) have emerged as a model by which to offer research experiences to all students. Studies have demonstrated that students benefit in multiple ways from CUREs, but little is known regarding how faculty benefit. This study presents the first qualitative investigation into the perspectives of a diverse group of faculty members who have developed and taught CUREs stemming from their own research interests. The faculty participants reported a number of faculty benefits that can result from a CURE, identified a variety of challenges to implementing CUREs, and speculated about the attributes of a successful CURE instructor. Altogether, our findings could be a way to promote the widespread implementation of CUREs

    Interaction of Pseudomonas aeruginosa with epithelial cells: Identification of differentially regulated genes by expression microarray analysis of human cDNAs

    No full text
    Pseudomonas aeruginosa is an opportunistic pathogen that plays a major role in lung function deterioration in cystic fibrosis patients. To identify critical host responses during infection, we have used high-density DNA microarrays, consisting of 1,506 human cDNA clones, to monitor gene expression in the A549 lung pneumocyte cell line during exposure to P. aeruginosa. We have identified host genes that are differentially expressed upon infection, several of which require interaction with P. aeruginosa and the expression of the major subunit of type IV pili, PilA. Differential expression of genes involved in various cellular functions was identified, and we selected the gene encoding the transcription factor interferon regulatory factor 1 (IRF-1) for further analysis. The levels of the IRF-1 transcript increased 3- to 4-fold in A549 cells after adherence by P. aeruginosa. A similar increase of IRF-1 mRNA was observed in A549 cells exposed to wild-type P. aeruginosa when compared to an isogenic, nonpiliated strain. However, this difference was abolished when serum was present during the incubation of bacteria. Exposure of A549 cells to purified P. aeruginosa lipopolysaccharide did not result in a significant increase in IRF-1 mRNA. Although the P. aeruginosa-induced increased IRF-1 expression depends on the presence of bacterial adhesin, our findings do not preclude the possibility that other bacterial products are responsible for IRF-1 activation, which is enhanced by bacterial adherence to cells. These data show that microarray technology can be an important tool for studying the complex interplay between bacterial pathogens and host

    Empowering faculty to initiate STEM education transformation: Efficacy of a systems thinking approach

    No full text
    Just a decade ago Vision and Change in Undergraduate Biology Education: A Call to Action was released, catalyzing several initiatives to transform undergraduate life sciences education. Among these was the Partnership for Undergraduate Life Sciences Education (PULSE), a national organization commissioned to increase the adoption of Vision and Change recommendations within academic life sciences departments. PULSE activities have been designed based on the recognition that life sciences departments and faculty are embedded within institutions of higher education which, similar to other large organizations, are complex systems composed of multiple, interconnected subsystems. The organizational change research suggests that effecting large-scale changes (e.g., undergraduate STEM education transformation) may be facilitated by applying systems thinking to change efforts. In this paper we introduce the approach of systems thinking as a professional development tool to empower individual STEM faculty to effect department-level transformation. We briefly describe a professional development experience designed to increase life sciences faculty members’ understanding of systems thinking, present evidence that faculty applied a systems thinking approach to initiate department-level change, and discuss the degree to which transformation efforts were perceived to be successful. Though focused on faculty in the life sciences, our findings are broadly transferable to other efforts seeking to effect change in undergraduate STEM education
    corecore