1,980 research outputs found

    Effective potential for composite operators and for an auxiliary scalar field in a Nambu-Jona-Lasinio model

    Full text link
    We derive the effective potentials for composite operators in a Nambu-Jona-Lasinio (NJL) model at zero and finite temperature and show that in each case they are equivalent to the corresponding effective potentials based on an auxiliary scalar field. The both effective potentials could lead to the same possible spontaneous breaking and restoration of symmetries including chiral symmetry if the momentum cutoff in the loop integrals is large enough, and can be transformed to each other when the Schwinger-Dyson (SD) equation of the dynamical fermion mass from the fermion-antifermion vacuum (or thermal) condensates is used. The results also generally indicate that two effective potentials with the same single order parameter but rather different mathematical expressions can still be considered physically equivalent if the SD equation corresponding to the extreme value conditions of the two potentials have the same form.Comment: 7 pages, no figur

    Collapse arrest and soliton stabilization in nonlocal nonlinear media

    Get PDF
    We investigate the properties of localized waves in systems governed by nonlocal nonlinear Schrodinger type equations. We prove rigorously by bounding the Hamiltonian that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric, but can be of completely arbitrary shape. We use variational techniques to find the soliton solutions and illustrate the stabilizing effect of nonlocality.Comment: 4 pages with 3 figure

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint

    Identifying cell class specific losses from serially generated electroretinogram components

    Get PDF
    Purpose. Processing of information through the cellular layers of the retina occurs in a serial manner. In the electroretinogram (ERG), this complicates interpretation of inner retinal changes as dysfunction may arise from “upstream” neurons or may indicate a direct loss to that neural generator. We propose an approach that addresses this issue by defining ERG gain relationships. Methods. Regression analyses between two serial ERG parameters in a control cohort of rats are used to define gain relationships. These gains are then applied to two models of retinal disease. Results. The to gain is unity whereas the to and to gains are greater than unity, indicating “amplification” (). Timing relationships show amplification between to and compression for to and to , (). Application of these gains to -3-deficiency indicates that all timing changes are downstream of photoreceptor changes, but a direct pSTR amplitude loss occurs (). Application to diabetes indicates widespread inner retinal dysfunction which cannot be attributed to outer retinal changes (). Conclusions. This simple approach aids in the interpretation of inner retinal ERG changes by taking into account gain characteristics found between successive ERG components of normal animals

    Coherent spin control by electromagnetic vacuum fluctuations

    Full text link
    In coherent control, electromagnetic vacuum fluctuations usually cause coherence loss through irreversible spontaneous emission. However, since the dissipation via emission is essentially due to correlation of the fluctuations, when emission ends in a superposition of multiple final states, correlation between different pathways may build up if the "which-way" information is not fully resolved (i.e., the emission spectrum is broader than the transition energy range). Such correlation can be exploited for spin-flip control in a Λ\Lambda-type three-level system, which manifests itself as an all-optical spin echo in nonlinear optics with two orders of optical fields saved as compared with stimulated Raman processes. This finding represents a new class of optical nonlinearity induced by electromagnetic vacuum fluctuations.Comment: 7 pages including 5 figure

    Energy funneling in a bent chain of Morse oscillators with long-range coupling

    Get PDF
    A bent chain of coupled Morse oscillators with long-range dispersive interaction is considered. Moving localized excitations may be trapped in the bending region. Thus chain geometry acts like an impurity. An energy funneling effect is observed in the case of random initial conditions.Comment: 6 pages, 12 figures. Submitted to Physical Review E, Oct. 13, 200

    Using the electroretinogram to understand how intraocular pressure elevation affects the rat retina

    Get PDF
    Intraocular pressure (IOP) elevation is a key risk factor for glaucoma. Our understanding of the effect that IOP elevation has on the eye has been greatly enhanced by the application of the electroretinogram (ERG). In this paper, we describe how the ERG in the rodent eye is affected by changes in IOP magnitude, duration, and number of spikes. We consider how the variables of blood pressure and age can modify the effect of IOP elevation on the ERG. Finally, we contrast the effects that acute and chronic IOP elevation can have on the rodent ERG

    Stability of two-dimensional spatial solitons in nonlocal nonlinear media

    Get PDF
    We discuss existence and stability of two-dimensional solitons in media with spatially nonlocal nonlinear response. We show that such systems, which include thermal nonlinearity and dipolar Bose Einstein condensates, may support a variety of stationary localized structures - including rotating spatial solitons. We also demonstrate that the stability of these structures critically depends on the spatial profile of the nonlocal response function.Comment: 8 pages, 9 figure

    Polychromatic solitons in a quadratic medium

    Full text link
    We introduce the simplest model to describe parametric interactions in a quadratically nonlinear optical medium with the fundamental harmonic containing two components with (slightly) different carrier frequencies [which is a direct analog of wavelength-division multiplexed (WDM) models, well known in media with cubic nonlinearity]. The model takes a closed form with three different second-harmonic components, and it is formulated in the spatial domain. We demonstrate that the model supports both polychromatic solitons (PCSs), with all the components present in them, and two types of mutually orthogonal simple solitons, both types being stable in a broad parametric region. An essential peculiarity of PCS is that its power is much smaller than that of a simple (usual) soliton (taken at the same values of control parameters), which may be an advantage for experimental generation of PCSs. Collisions between the orthogonal simple solitons are simulated in detail, leading to the conclusion that the collisions are strongly inelastic, converting the simple solitons into polychromatic ones, and generating one or two additional PCSs. A collision velocity at which the inelastic effects are strongest is identified, and it is demonstrated that the collision may be used as a basis to design a simple all-optical XOR logic gate.Comment: 9 pages, 8 figures, accepted to Phys. Rev.

    Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media

    Full text link
    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.Comment: Review article, will be published in Journal of Optics B, special issue on Optical Solitons, 6 figure
    corecore