1,818 research outputs found

    Non-global logarithms in inter-jet energy flow with kt clustering requirement

    Get PDF
    Recent work in inter-jet energy flow has identified a class of leading logarithms previously not considered in the literature. These so-called non-global logarithms have been shown to have significant numerical impact on gaps-between-jets calculations at the energies of current particle colliders. Here we calculate, at fixed order and to all orders, the effect of applying clustering to the gluonic final state responsible for these logarithms for a trivial colour flow 2 jet system. Such a clustering algorithm has already been used for experimental measurements at HERA. We find that the impact of the non-global logarithms is reduced, but not removed, when clustering is demanded, a result which is of considerable interest for energy flow observable calculations.Comment: 13 pages, 4 figure

    Non-global logarithms and jet algorithms in high-pT jet shapes

    Get PDF
    We consider jet-shape observables of the type proposed recently, where the shapes of one or more high-pT jets, produced in a multi-jet event with definite jet multiplicity, may be measured leaving other jets in the event unmeasured. We point out the structure of the full next-to-leading logarithmic resummation specifically including resummation of non-global logarithms in the leading-Nc limit and emphasising their properties. We also point out differences between jet algorithms in the context of soft gluon resummation for such observables.Comment: 22 pages, 4 figures. Title and a few words changed. Several typos corrected. Version accepted by JHE

    Ab-initio calculation of all-optical time-resolved calorimetry of nanosized systems: Evidence of nanosecond-decoupling of electron and phonon temperatures

    Get PDF
    The thermal dynamics induced by ultrashort laser pulses in nanoscale systems, i.e. all-optical time-resolved nanocalorimetry is theoretically investigated from 300 to 1.5 K. We report ab-initio calculations describing the temperature dependence of the electron-phonon interactions for Cu nanodisks supported on Si. The electrons and phonons temperatures are found to decouple on the ns time scale at 10 K, which is two orders of magnitude in excess with respect to that found for standard low-temperature transport experiments. By accounting for the physics behind our results we suggest an alternative route for overhauling the present knowledge of the electron-phonon decoupling mechanism in nanoscale systems by replacing the mK temperature requirements of conventional experiments with experiments in the time-domain.Comment: 5 pages, 3 figures. Accepted on Physical Review B

    Optimisation of variables for studying dilepton transverse momentum distributions at hadron colliders

    Get PDF
    In future measurements of the dilepton (Z/γZ/\gamma^*) transverse momentum, \Qt, at both the Tevatron and LHC, the achievable bin widths and the ultimate precision of the measurements will be limited by experimental resolution rather than by the available event statistics. In a recent paper the variable \at, which corresponds to the component of \Qt\ that is transverse to the dilepton thrust axis, has been studied in this regard. In the region, \Qt\ << 30 GeV, \at\ has been shown to be less susceptible to experimental resolution and efficiency effects than the \Qt. Extending over all \Qt, we now demonstrate that dividing \at\ (or \Qt) by the measured dilepton invariant mass further improves the resolution. In addition, we propose a new variable, \phistarEta, that is determined exclusively from the measured lepton directions; this is even more precisely determined experimentally than the above variables and is similarly sensitive to the \Qt. The greater precision achievable using such variables will enable more stringent tests of QCD and tighter constraints on Monte Carlo event generator tunes.Comment: 8 pages, 5 figures, 2 table

    Non-Global Logarithms in Filtered Jet Algorithms

    Get PDF
    We analytically and numerically study the effect of perturbative gluons emission on the "Filtering analysis", which is part of a subjet analysis procedure proposed two years ago to possibly identify a low-mass Higgs boson decaying into b\bar{b} at the LHC. This leads us to examine the non-global structure of the resulting perturbative series in the leading single-log large-N_c approximation, including all-orders numerical results, simple analytical approximations to them and comments on the structure of their series expansion. We then use these results to semi-analytically optimize the parameters of the Filtering analysis so as to suppress as much as possible the effect of underlying event and pile-up on the Higgs mass peak reconstruction while keeping the major part of the perturbative radiation from the b\bar{b} dipole.Comment: 47 pages, 25 figures, 1 figure and a few comments added, version accepted for publication in JHE

    Disentangling the Hypothesis of Host Dysosmia and SARS-CoV-2 : The Bait Symptom That Hides Neglected Neurophysiological Routes

    Get PDF
    The respiratory condition COVID-19 arises in a human host upon the infection with SARS-CoV-2, a coronavirus that was first acknowledged in Wuhan, China, at the end of December 2019 after its outbreak of viral pneumonia. The full-blown COVID-19 can lead, in susceptible individuals, to premature death because of the massive viral proliferation, hypoxia, misdirected host immunoresponse, microthrombosis, and drug toxicities. Alike other coronaviruses, SARS-CoV-2 has a neuroinvasive potential, which may be associated with early neurological symptoms. In the past, the nervous tissue of patients infected with other coronaviruses was shown to be heavily infiltrated. Patients with SARS-CoV-2 commonly report dysosmia, which has been related to the viral access in the olfactory bulb. However, this early symptom may reflect the nasal proliferation that should not be confused with the viral access in the central nervous system of the host, which can instead be allowed by means of other routes for spreading in most of the neuroanatomical districts. Axonal, trans-synaptic, perineural, blood, lymphatic, or Trojan routes can gain the virus multiples accesses from peripheral neuronal networks, thus ultimately invading the brain and brainstem. The death upon respiratory failure may be also associated with the local inflammation- and thrombi-derived damages to the respiratory reflexes in both the lung neuronal network and brainstem center. Beyond the infection-associated neurological symptoms, long-term neuropsychiatric consequences that could occur months after the host recovery are not to be excluded. While our article does not attempt to fully comprehend all accesses for host neuroinvasion, we aim at stimulating researchers and clinicians to fully consider the neuroinvasive potential of SARS-CoV-2, which is likely to affect the peripheral nervous system targets first, such as the enteric and pulmonary nervous networks. This acknowledgment may shed some light on the disease understanding further guiding public health preventive efforts and medical therapies to fight the pandemic that directly or indirectly affects healthy isolated individuals, quarantined subjects, sick hospitalized, and healthcare workers

    The Escape of Ionizing Photons from OB Associations in Disk Galaxies: Radiation Transfer Through Superbubbles

    Full text link
    By solving the time-dependent radiation transfer problem of stellar radiation through evolving superbubbles within a smoothly varying HI distribution, we estimate the fraction of ionizing photons emitted by OB associations that escapes the HI disk of our Galaxy into the halo and intergalactic medium (IGM). We consider both coeval star-formation and a Gaussian star-formation history with a time spread sigma_t = 2 Myr. We consider both a uniform H I distribution and a two-phase (cloud/intercloud) model, with a negligible filling factor of hot gas. We find that the shells of the expanding superbubbles quickly trap or attenuate the ionizing flux, so that most of the escaping radiation escapes shortly after the formation of the superbubble. For the coeval star-formation history, the total fraction of Lyman Continuum photons that escape both sides of the disk in the solar vicinity is f_esc approx 0.15 +/- 0.05. For the Gaussian star formation history, f_esc approx 0.06 +/- 0.03, a value roughly a factor of two lower than the results of Dove & Shull (1994), where superbubbles were not considered. For a local production rate of ionizing photons Psi_LyC = 4.95 X 10^7 cm^{-2} s^{-1}, the flux escaping the disk is Phi_LyC approx (1.5-3.0) X 10^6 cm^{-2} s^{-1} for coeval and Gaussian star formation, comparable to the flux required to sustain the Reynolds layer.Comment: Revised version (expanded), accepted for publication by ApJ, 38 pages, 8 figures, aasms4.sty and aabib.sty files include

    Dijet Event Shapes as Diagnostic Tools

    Full text link
    Event shapes have long been used to extract information about hadronic final states and the properties of QCD, such as particle spin and the running coupling. Recently, a family of event shapes, the angularities, has been introduced that depends on a continuous parameter. This additional parameter-dependence further extends the versatility of event shapes. It provides a handle on nonperturbative power corrections, on non-global logarithms, and on the flow of color in the final state.Comment: 18 pages, 3 figure

    Exploring circannual rhythms and chronotype effect in patients with Obsessive-Compulsive Tic Disorder (OCTD) : a pilot study

    Get PDF
    Background: The aim of this study was to test, through a chronobiologic approach, the existence of a significant circannual rhythm of tics and obsessive-compulsive symptoms in patients with Obsessive-Compulsive Tic Disorder (OCTD). The chronotype effect on tics and OC symptoms during seasons was also studied. Methods: Patients with a diagnosis of OCTD (N = 37; mean age = 18.78 \ub1 8.61) underwent four clinical evaluations: Winter (WIN), Spring (SPR), Summer (SUM) and Autumn (AUT). Tics were evaluated through Yale Global Tic Severity Scale (YGTSS) and OC symptoms through Yale-Brown Obsessive Compulsive Scale (Y-BOCS). Patients\u2019 chronotype was assessed by the Horne-Ostberg morningness-eveningness questionnaire (MEQ), which categorizes subjects according to the individuals'chronotype, being morning-type, evening-type, and neither-type. Results: A statistically significant circannual rhythm was observed for OC symptoms (p = 0.007), with the acrophase occurring between AUT and WIN. Y-BOCS differed along the year (p = 0.0003 and \u3b72p = 0.40) with lower results in SUM compared to WIN (p &lt; 0.05) and AUT (p &lt; 0.01). Tics displayed no circannual rhythm and YGTSS scores were comparable among seasons. Patients were classified as 15 morning-types (40.5%) 15 neither-types (40.5%) and 7 evening-types (19.0%). YGTSS data were similar for all chronotypes while Y-BOCS results were greater during SUM in evening-types than morning-type patients (p &lt; 0.05; 15.7 \ub1 5.2 vs 3.4 \ub1 6.0). Limitations: It is essential to investigate the existence of tics and OC symptoms circannual rhythms over the course of more than one year with a larger sample. Conclusions: OC symptoms displayed a significant circannual rhythm and were influenced by patients\u2019 chronotype. On the contrary, tics resulted similar among seasons and chronotypes
    corecore