40 research outputs found

    Corvidae Feather Pulp and West Nile Virus Detection

    Get PDF
    We evaluated cloacal swab, vascular pulp of flight feather, and kidney and spleen pool samples from carcasses of members of the family Corvidae as sources of West Nile virus (WNV). The cloacal swab, kidney and spleen pool, and feather pulp, respectively, were the source of WNV in 38%, 43%, and 77% of the carcasses

    Multifocal Avian Influenza (H5N1) Outbreak

    Get PDF
    During March 2006, an outbreak of highly pathogenic avian influenza (H5N1) occurred in multiple poultry farms in Israel. The epidemiologic investigation and review of outbreak mitigation efforts uncovered gaps in planning for and containing the outbreak, thus affording valuable lessons applicable to other countries in similar settings

    West Nile Virus in Morocco, 2003

    Get PDF
    West Nile virus (WNV) reemerged in Morocco in September 2003, causing an equine outbreak. A WNV strain isolated from a brain biopsy was completely sequenced. On the basis of phylogenetic analyses, Moroccan WNV strains isolated during the 1996 and 2003 outbreaks were closely related to other strains responsible for equine outbreaks in the western Mediterranean basin

    Magpies as Hosts for West Nile Virus, Southern France

    Get PDF
    European magpies (Pica pica) from southern France were tested for antibodies to West Nile virus (WNV) and viral shedding in feces during spring–autumn 2005. Results suggest that this peridomestic species may be a suitable sentinel species and a relevant target for additional investigations on WNV ecology in Europe

    Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on results of earlier studies, brain, heart and kidney are most commonly used for West Nile virus (WNV) detection in avian species. Both monoclonal and polyclonal antibodies have been used for the immunohistochemical diagnosis of WNV in these species. Thus far, no studies have been performed to compare the sensitivity and specificity of monoclonal and polyclonal antibodies in detecting WNV in American crows (<it>Corvus brachyrhynchos</it>). Our objectives were to determine 1) the comparative sensitivities of monoclonal and polyclonal antibodies for immunohistochemical (IHC) diagnosis of WNV infection in free-ranging American crows, 2) which organ(s) is/are most suitable for IHC-based diagnosis of WNV, and 3) how real-time RT-PCR on RNA extracted from formalin-fixed paraffin-embedded tissues compared to IHC for the diagnosis of WNV infection.</p> <p>Methods</p> <p>Various combinations, depending on tissue availability, of sections of heart, kidney, brain, liver, lung, spleen, and small intestine from 85 free-ranging American crows were stained using a rabbit-polyclonal anti-WNV antibody as well as a monoclonal antibody directed against an epitope on Domain III of the E protein of WNV. The staining intensity and the extent of staining were determined for each organ using both antibodies. Real-time RT-PCR on formalin-fixed paraffin-embedded tissues from all 85 crows was performed.</p> <p>Results</p> <p>Forty-three crows were IHC-positive in at least one of the examined organs with the polyclonal antibody, and of these, only 31 were positive when IHC was performed with the monoclonal antibody. Real-time RT-PCR amplified WNV-specific sequences from tissue extracts of the same 43 crows that were IHC-positive using the polyclonal antibody. All other 42 crows tested negative for WNV with real-time PCR and IHC staining. Both antibodies had a test specificity of 100% when compared to PCR results. The test sensitivity of monoclonal antibody-based IHC staining was only 72%, compared to 100% when using the polyclonal antibody.</p> <p>Conclusion</p> <p>The most sensitive, readily identified, positively staining organs for IHC are the kidney, liver, lung, spleen, and small intestine. Real-time RT-PCR and IHC staining using a polyclonal antibody on sections of these tissues are highly sensitive diagnostic tests for the detection of WNV in formalin-fixed tissues of American crows.</p

    Glycoprotein gene truncation in avian metapneumovirus subtype C isolates from the United States

    Get PDF
    The length of the published glycoprotein (G) gene sequences of avian metapneumovirus subtype-C (aMPV-C) isolated from domestic turkeys and wild birds in the United States (1996–2003) remains controversial. To explore the G gene size variation in aMPV-C by the year of isolation and cell culture passage levels, we examined 21 turkey isolates of aMPV-C at different cell culture passages. The early domestic turkey isolates of aMPV-C (aMPV/CO/1996, aMPV/MN/1a-b, and 2a-b/97) had a G gene of 1,798 nucleotides (nt) that coded for a predicted protein of 585 amino acids (aa) and showed >97% nt similarity with that of aMPV-C isolated from Canada geese. This large G gene got truncated upon serial passages in Vero cell cultures by deletion of 1,015 nt near the end of the open reading frame. The recent domestic turkey isolates of aMPV-C lacked the large G gene but instead had a small G gene of 783 nt, irrespective of cell culture passage levels. In some cultures, both large and small genes were detected, indicating the existence of a mixed population of the virus. Apparently, serial passage of aMPV-C in cell cultures and natural passage in turkeys in the field led to truncation of the G gene, which may be a mechanism of virus evolution for survival in a new host or environment
    corecore