16 research outputs found

    Snowmobile noise alters bird vocalization patterns during winter and pre-breeding season

    Get PDF
    Noise pollution poses a significant threat to ecosystems worldwide, disrupting animal communication and causing cascading effects on biodiversity. In this study, we focus on the impact of snowmobile noise on avian vocalizations during the non-breeding winter season, a less-studied area in soundscape ecology. We developed a pipeline relying on deep learning methods to detect snowmobile noise and applied it to a large acoustic monitoring dataset collected in Yellowstone National Park. Our results demonstrate the effectiveness of the snowmobile detection model in identifying snowmobile noise and reveal an association between snowmobile passage and changes in avian vocalization patterns. Snowmobile noise led to a decrease in the frequency of bird vocalizations during mornings and evenings, potentially affecting winter and pre-breeding behaviours such as foraging, predator avoidance and successfully finding a mate. However, we observed a recovery in avian vocalizations after detection of snowmobiles during mornings and afternoons, indicating some resilience to sporadic noise events. Synthesis and applications: Our findings emphasize the need to consider noise impacts in the non-breeding season and provide valuable insights for natural resource managers to minimize disturbance and protect critical avian habitats. The deep learning approach presented in this study offers an efficient and accurate means of analysing large-scale acoustic monitoring data and contributes to a comprehensive understanding of the cumulative impacts of multiple stressors on avian communities.Snowmobile noise alters bird vocalization patterns during winter and pre-breeding seasonpublishedVersio

    Har ha-mor : she示elot u-teshuvot ve-nilv蹋eh alav蹋 sefer H蹋okhmat Shelomoh she示elot u-teshuvot asher h蹋iber Shelomoh K蹋ev蹋驶et蹋sh.

    No full text
    讜讜/31讗志 讛84.5 XVCPLSHThis book is from the private library of Mattityahu Strashun.BSLW YIVOL Clean-up ProjectDigital imag

    Misped gadol ... 驶al mot ... avi ... ha-rav ... Mordekhai Banet蹋 /

    No full text
    讜讜/6志 诪 64.1VCPLSHThis book is from the private library of Mattityahu Strashun.BSLW YIVOL Clean-up ProjectDigital imag

    Author's personal copy A universal epitope-based influenza vaccine and its efficacy against H5N1

    No full text
    a b s t r a c t Previous studies have shown that a recombinant vaccine expressing four highly conserved influenza virus epitopes has a potential for a broad spectrum, cross-reactive vaccine; it induced protection against H1, H2 and H3 influenza strains. Here, we report on the evaluation of an epitope-based vaccine in which six conserved epitopes, common to many influenza virus strains are expressed within a recombinant flagellin that serves as both a carrier and adjuvant. In an HLA-A2.1 transgenic mice model, this vaccine induced both humoral and cellular responses and conferred some protection against lethal challenge with the highly pathogenic H5N1 avian influenza strain. Hence, it is expected to protect against future strains as well. The data presented, demonstrate the feasibility of using an array of peptides for vaccination, which might pave the way to an advantageous universal influenza virus vaccine that does not require frequent updates and/or annual immunizations

    In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators

    No full text
    International audienceABCB11 is responsible for biliary bile acid secretion at the canalicular membrane of hepatocytes. Variations in the ABCB11 gene cause a spectrum of rare liver diseases. The most severe form is progressive familial intrahepatic cholestasis type 2 (PFIC2). Current medical treatments have limited efficacy. Here, we report the in vitro study of Abcb11 missense variants identified in Citation: Mareux, E.; Lapalus, M.; Ben Saad, A.; Zelli, R.; Lakli, M.; Riahi, Y.; Almes, M.; Banet, M.; Callebaut, I.; Decout, J.-L.; et al. In Vitro Rescue of the Bile Acid Transport Function of ABCB11 Variants by CFTR Potentiators. Int. J. Mol. Sci. 2022, 23, 10758. https:// doi.org/10.3390/ijms231810758 Academic Editor: Cesare Indiveri Received: 11 August 2022 Accepted: 13 September 2022 Published: 15 September 2022 Publisher鈥檚 Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. Copyright: 漏 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). PFIC2 patients and their functional rescue using cystic fibrosis transmembrane conductance regulator potentiators. Three ABCB11 disease-causing variations identified in PFIC2 patients (i.e., A257V, T463I and G562D) were reproduced in a plasmid encoding an Abcb11-green fluorescent protein. After transfection, the expression and localization of the variants were studied in HepG2 cells. Taurocholate transport activity and the effect of potentiators were studied in Madin鈥揇arby canine kidney (MDCK) clones coexpressing Abcb11 and the sodium taurocholate cotransporting polypeptide (Ntcp/Slc10A1). As predicted using three-dimensional structure analysis, the three variants were expressed at the canalicular membrane but showed a defective function. Ivacaftor, GLP1837, SBC040 and SBC219 potentiators increased the bile acid transport of A257V and T463I and to a lesser extent, of G562D Abcb11 missense variants. In addition, a synergic effect was observed when ivacaftor was combined with SBC040 or SBC219. Such potentiators could represent new pharmacological approaches for improving the condition of patients with ABCB11 deficiency due to missense variations affecting the function of the transporter
    corecore