9 research outputs found

    Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model

    Full text link
    We investigate signatures of the minimal supersymmetric inverse seesaw model at the large hadron collider (LHC) with three isolated leptons and large missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the final state. This signal has its origin in the decay of chargino-neutralino (\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the lighter chargino into a charged lepton and a singlet sneutrino has a characteristic decay pattern which is correlated with the observed large atmospheric neutrino mixing angle. This correlation is potentially observable at the LHC by looking at the ratios of cross sections of the trilepton + \mET channels in certain flavour specific modes. We show that even after considering possible leading standard model backgrounds these final states can lead to reasonable discovery significance at the LHC with both 7 TeV and 14 TeV center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC observables added, minor modifications in text and in the abstract, 23 new references added, matches with the published version in JHE

    The impact of different fertiliser management options and cultivars on nitrogen use efficiency and yield for rice cropping in the Indo-Gangetic Plain: two seasons of methane, nitrous oxide and ammonia emissions

    Get PDF
    This study presents detailed crop and gas flux data from two years of rice production at the experimental farm of the ICAR-Indian Agricultural Research Institute, New Delhi, India. In comparing 4 nitrogen (N) fertiliser regimes across 4 rice cultivars (CRD 310, IR-64, MTU 1010, P-44), we have added to growing evidence of the environmental costs of rice production in the region. The study shows that rice cultivar can impact yields of both grain, and total biomass produced in given circumstances, with the CRD 310 cultivar showing consistently high nitrogen use efficiency (NUE) for total biomass compared with other tested varieties, but not necessarily with the highest grain yield, which was P-44 in this experiment. While NUE of the rice did vary depending on experimental treatments (ranging from 41% to 73%), 73%), this did not translate directly into the reduction of emissions of ammonia (NH3) and nitrous oxide (N2O). Emissions were relatively similar across the different rice cultivars regardless of NUE. Conversely, agronomic practices that reduced total N losses were associated with higher yield. In terms of fertiliser application, the outstanding impact was of the very high methane (CH4) emissions as a result of incorporating farmyard manure (FYM) into rice paddies, which dominated the overall effect on global warming potential. While the use of nitrification and urease inhibiting substances decreased N2O emissions overall, NH3 emissions were relatively unaffected (or slightly higher). Overall, the greatest reduction in greenhouse gas (GHG) emissions came from reducing irrigation water added to the fields, resulting in higher N2O, but significantly less CH4 emissions, reducing net GHG emission compared with continuous flooding. Overall, genetic differences generated more variation in yield and NUE than agronomic management (excluding controls), whereas agronomy generated larger differences than genetics concerning gaseous losses. This study suggests that a mixed approach needs to be applied when attempting to reduce pollution and global warming potential from rice production and potential pollution swapping and synergies need to be considered. Finding the right balance of rice cultivar, irrigation technique and fertiliser type could significantly reduce emissions, while getting it wrong can result in considerably poorer yields and higher pollution

    Nitrogen Challenges and Opportunities for Agricultural and Environmental Science in India

    Get PDF
    In the last six decades, the consumption of reactive nitrogen (Nr) in the form of fertilizer in India has been growing rapidly, whilst the nitrogen use efficiency (NUE) of cropping systems has been decreasing. These trends have led to increasing environmental losses of Nr, threatening the quality of air, soils, and fresh waters, and thereby endangering climate-stability, ecosystems, and human-health. Since it has been suggested that the fertilizer consumption of India may double by 2050, there is an urgent need for scientific research to support better nitrogen management in Indian agriculture. In order to share knowledge and to develop a joint vision, experts from the UK and India came together for a conference and workshop on “Challenges and Opportunities for Agricultural Nitrogen Science in India.” The meeting concluded with three core messages: (1) Soil stewardship is essential and legumes need to be planted in rotation with cereals to increase nitrogen fixation in areas of limited Nr availability. Synthetic symbioses and plastidic nitrogen fixation are possibly disruptive technologies, but their potential and implications must be considered. (2) Genetic diversity of crops and new technologies need to be shared and exploited to reduce N losses and support productive, sustainable agriculture livelihoods. Móring et al. Nitrogen Challenges and Opportunities (3) The use of leaf color sensing shows great potential to reduce nitrogen fertilizer use (by 10–15%). This, together with the usage of urease inhibitors in neem-coated urea, and better management of manure, urine, and crop residues, could result in a 20–25% improvement in NUE of India by 2030

    Experimental comparison of continuous and intermittent flooding of rice in relation to methane, nitrous oxide and ammonia emissions and the implications for nitrogen use efficiency and yield

    No full text
    Intermittent flooding (IF) of rice has been encouraged as an approach to reduce water use and methane emissions compared with continuous flooding (CF), but may involve trade-offs. This study compared the contrasting effect of IF and CF flooding regimes on emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3), nitrogen use efficiency (NUE) and yield. A split plot design was used which assessed the effects of four different fertiliser types. The results suggest that converting from CF to IF irrigation does lower CH4 emissions (by approximately 18%); however, this comes at a cost. IF irrigation resulted in a significant decrease in grain yield, regardless of fertiliser type (6.1% in this study) and also a significant decrease in NUE (a drop of 22.5% when compared to CF). IF irrigation also resulted in a small, but statistically significant (t-test p < 0.01) increase in N2O emissions. Difference in NH3 emission between the flooding regimes was not statistically significant. Our study concludes that conversion from CF to IF irrigation methods may well reduce overall global warming potential of greenhouse gas emissions from rice production; however, yield penalties and nitrogen pollution are likely to increase as a result. Leaf colour chart based application of Neem coated urea may lower the yield scaled GHG emissions under CF irrigation and NH3 loss in IF irrigation
    corecore