167 research outputs found

    Election proximity and representation focus in party-constrained environments

    Get PDF
    Do elected representatives have a time-constant representation focus or do they adapt their focus depending on election proximity? In this article, we examine these overlooked theoretical and empirical puzzles by looking at how reelection-seeking actors adapt their legislative behavior according to the electoral cycle. In parliamentary democracies, representatives need to serve two competing principals: their party and their district. Our analysis hinges on how representatives make a strategic use of parliamentary written questions in a highly party-constrained institutional context to heighten their reselection and reelection prospects. Using an original data set of over 32,000 parliamentary questions tabled by Portuguese representatives from 2005 to 2015, we examine how time interacts with two key explanatory elements: electoral vulnerability and party size. Results show that representation focus is not static over time and, in addition, that electoral vulnerability and party size shape strategic use of parliamentary questions

    Spontaneous Eosinophilic Nasal Inflammation in a Genetically-Mutant Mouse: Comparative Study with an Allergic Inflammation Model

    Get PDF
    Background: Eosinophilic inflammation is a hallmark of chronic rhinosinusitis with nasal polyps. To model this disease process experimentally, nasal sensitization of mice with ovalbumin or aspergillus has been described. Here, we describe a genetically mutant mouse that develops robust spontaneous nasal eosinophilic inflammation. These mice lack the enzyme SHP-1 that down-regulates the IL-4Ra/stat6 signaling pathway. We compared nasal inflammation and inflammatory mediators in SHP-1 deficient mice (mev) and an ovalbumin-induced nasal allergy model. Methods: A novel technique of trans-pharyngeal nasal lavage was developed to obtain samples of inflammatory cells from the nasal passages of allergic and mev mice. Total and differential cell counts were performed on cytospin preparations. Expression of tissue mRNA for IL-4, IL-13, and mouse beta-defensin-1 (MBD-1) was determined by quantitative PCR. Eotaxin in the lavage fluid was assessed by ELISA. Results: Allergic and mev mice had increased total cells and eosinophils compared with controls. Expression of IL-4 was similarly increased in both allergic and mev mice, but expression of IL-13 and eotaxin was significantly greater in the allergic mice than mev mice. Eotaxin was significantly up-regulated in both allergic rhinitis and mev mice. In both models of eosinophilic inflammation, down-regulation of the innate immune marker MBD-1 was observed. Conclusions: The mev mice display spontaneous chronic nasal eosinophilic inflammation with potential utility for chroni

    Post-Transcriptional Regulation of 5-Lipoxygenase mRNA Expression via Alternative Splicing and Nonsense-Mediated mRNA Decay

    Get PDF
    5-Lipoxygenase (5-LO) catalyzes the two initial steps in the biosynthesis of leukotrienes (LT), a group of inflammatory lipid mediators derived from arachidonic acid. Here, we investigated the regulation of 5-LO mRNA expression by alternative splicing and nonsense-mediated mRNA decay (NMD). In the present study, we report the identification of 2 truncated transcripts and 4 novel 5-LO splice variants containing premature termination codons (PTC). The characterization of one of the splice variants, 5-LOΔ3, revealed that it is a target for NMD since knockdown of the NMD factors UPF1, UPF2 and UPF3b in the human monocytic cell line Mono Mac 6 (MM6) altered the expression of 5-LOΔ3 mRNA up to 2-fold in a cell differentiation-dependent manner suggesting that cell differentiation alters the composition or function of the NMD complex. In contrast, the mature 5-LO mRNA transcript was not affected by UPF knockdown. Thus, the data suggest that the coupling of alternative splicing and NMD is involved in the regulation of 5-LO gene expression

    Anti-Arthritic Effects of Magnolol in Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model

    Get PDF
    Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5′-Diallyl-biphenyl-2,2′-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases

    Cellular composition characterizing postnatal development and maturation of the mouse brain and spinal cord

    Get PDF
    The process of development, maturation, and regression in the central nervous system (CNS) are genetically programmed and influenced by environment. Hitherto, most research efforts have focused on either the early development of the CNS or the late changes associated with aging, whereas an important period corresponding to adolescence has been overlooked. In this study, we searched for age-dependent changes in the number of cells that compose the CNS (divided into isocortex, hippocampus, olfactory bulb, cerebellum, ‘rest of the brain’, and spinal cord) and the pituitary gland in 4–40-week-old C57BL6 mice, using the isotropic fractionator method in combination with neuronal nuclear protein as a marker for neuronal cells. We found that all CNS structures, except for the isocortex, increased in mass in the period of 4–15 weeks. Over the same period, the absolute number of neurons significantly increased in the olfactory bulb and cerebellum while non-neuronal cell numbers increased in the ‘rest of the brain’ and isocortex. Along with the gain in body length and weight, the pituitary gland also increased in mass and cell number, the latter correlating well with changes of the brain and spinal cord mass. The majority of the age-dependent alterations (e.g., somatic parameters, relative brain mass, number of pituitary cells, and cellular composition of the cerebellum, isocortex, rest of the brain, and spinal cord) occur rapidly between the 4th and 11th postnatal weeks. This period includes murine adolescence, underscoring the significance of this stage in the postnatal development of the mouse CNS
    corecore