1,088 research outputs found

    CMB signal in WMAP 3yr data with FastICA

    Get PDF
    We present an application of the fast Independent Component Analysis (FastICA) to the WMAP 3yr data with the goal of extracting the CMB signal. We evaluate the confidence of our results by means of Monte Carlo simulations including CMB, foreground contaminations and instrumental noise specific of each WMAP frequency band. We perform a complete analysis involving all or a subset of the WMAP channels in order to select the optimal combination for CMB extraction, using the frequency scaling of the reconstructed component as a figure of merit. We found that the combination KQVW provides the best CMB frequency scaling, indicating that the low frequency foreground contamination in Q, V and W bands is better traced by the emission in the K band. The CMB angular power spectrum is recovered up to the degree scale, it is consistent within errors for all WMAP channel combination considered, and in close agreement with the WMAP 3yr results. We perform a statistical analysis of the recovered CMB pattern, and confirm the sky asymmetry reported in several previous works with independent techniques.Comment: 10 pages, 7 figures, submitted to MNRA

    Authentication of Electronic Records: Limitations of Indian Legal Approach

    Full text link
    Paper based documents have inherent authenticity and high evidentiary value for obvious reasons. The documents are permanent record of the contractual relationship of the parties and their contents cannot be so easily altered, modified or changed and even if any change is effected that can be easily detected. This is the reason that the Indian Evidence Act, 1872 excludes oral evidence in presence of documentary evidence. The moot point is that can an electronic record be treated equivalent to paper based record? In other words, can an electronic record have all the properties of the physical document appended with the hand written signature? This is necessitated by the fact that there are different laws in India providing that a contract is not valid unless it is in writing and signed by the parties. An attempt is made in this paper to analyze the provisions prescribing authentication of electronic records in India to demonstrate inherent limitations in them. To overcome these limitations, a new model of authentication is proposed which is based on digital signature combined with time stamping service

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    The Dipole Observed in the COBE DMR Four-Year Data

    Get PDF
    The largest anisotropy in the cosmic microwave background (CMB) is the 3\approx 3 mK dipole assumed to be due to our velocity with respect to the CMB. Using the four year data set from all six channels of the COBE Differential Microwave Radiometers (DMR), we obtain a best-fit dipole amplitude 3.358±0.001±0.0233.358 \pm 0.001 \pm 0.023 mK in the direction (l,b)=(264deg.31±0deg.04±0deg.16,+48deg.05±0deg.02±0deg.09)(l,b)=(264\deg.31 \pm 0\deg.04 \pm 0\deg.16, +48\deg.05 \pm 0\deg.02 \pm 0\deg.09), where the first uncertainties are statistical and the second include calibration and combined systematic uncertainties. This measurement is consistent with previous DMR and FIRAS resultsComment: New and improved version; to be published in ApJ next mont

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap

    The scalar perturbation spectral index n_s: WMAP sensitivity to unresolved point sources

    Get PDF
    Precision measurement of the scalar perturbation spectral index, n_s, from the Wilkinson Microwave Anisotropy Probe temperature angular power spectrum requires the subtraction of unresolved point source power. Here we reconsider this issue. First, we note a peculiarity in the WMAP temperature likelihood's response to the source correction: Cosmological parameters do not respond to increased source errors. An alternative and more direct method for treating this error term acts more sensibly, and also shifts n_s by ~0.3 sigma closer to unity. Second, we re-examine the source fit used to correct the power spectrum. This fit depends strongly on the galactic cut and the weighting of the map, indicating that either the source population or masking procedure is not isotropic. Jackknife tests appear inconsistent, causing us to assign large uncertainties to account for possible systematics. Third, we note that the WMAP team's spectrum was computed with two different weighting schemes: uniform weights transition to inverse noise variance weights at l = 500. The fit depends on such weighting schemes, so different corrections apply to each multipole range. For the Kp2 mask used in cosmological analysis, we prefer source corrections A = 0.012 +/- 0.005 muK^2 for uniform weighting and A = 0.015 +/- 0.005 muK^2 for N_obs weighting. Correcting WMAP's spectrum correspondingly, we compute cosmological parameters with our alternative likelihood, finding n_s = 0.970 +/- 0.017 and sigma_8 = 0.778 +/- 0.045 . This n_s is only 1.8 sigma from unity, compared to the ~2.6 sigma WMAP 3-year result. Finally, an anomalous feature in the source spectrum at l<200 remains, most strongly associated with W-band.Comment: 9 pages, 10 figures, 3 tables. Submitted to Ap

    Search For Unresolved Sources In The COBE-DMR Two-Year Sky Maps

    Full text link
    We have searched the temperature maps from the COBE Differential Microwave Radiometers (DMR) first two years of data for evidence of unresolved sources. The high-latitude sky (|b| > 30\deg) contains no sources brighter than 192 uK thermodynamic temperature (322 Jy at 53 GHz). The cumulative count of sources brighter than threshold T, N(> T), is consistent with a superposition of instrument noise plus a scale-invariant spectrum of cosmic temperature fluctuations normalized to Qrms-PS = 17 uK. We examine the temperature maps toward nearby clusters and find no evidence for any Sunyaev-Zel'dovich effect, \Delta y < 7.3 x 10^{-6} (95% CL) averaged over the DMR beam. We examine the temperature maps near the brightest expected radio sources and detect no evidence of significant emission. The lack of bright unresolved sources in the DMR maps, taken with anisotropy measurements on smaller angular scales, places a weak constraint on the integral number density of any unresolved Planck-spectrum sources brighter than flux density S, n(> S) < 2 x 10^4 (S/1 Jy)^{-2} sr^{-1}.Comment: 16 pages including 2 figures, uuencoded PostScript, COBE preprint 94-0

    Standardization of Leaf Sampling Technique for Macronutrients in Apricot under Temperate Conditions

    Get PDF
    Macro- and micro-nutrient content influenced by position of leaf on the shoot and time of sampling was studied to determine leaf-sampling time for apricot grown in temperate region of the country. Results revealed that middle order leaves were the most suitable for determining nutrient needs in apricot trees. Leaf samples should be collected during June - July for determining N, K and Ca; first fortnight of July for P; and, from mid-June to mid-July for Mg

    Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?

    Full text link
    Motivated by the large-scale asymmetry observed in the cosmic microwave background sky, we consider a specific class of anisotropic cosmological models -- Bianchi type VII_h -- and compare them to the WMAP first-year data on large angular scales. Remarkably, we find evidence of a correlation which is ruled out as a chance alignment at the 3sigma level. The best fit Bianchi model corresponds to x=0.55, Omega_0=0.5, a rotation axis in the direction (l,b)=(222degr,-62degr), shear (sigma/H)_0=2.4e-10 and a right--handed vorticity (omega/H)_0=6.1e-10. Correcting for this component greatly reduces the significance of the large-scale power asymmetry, resolves several anomalies detected on large angular scales (ie. the low quadrupole amplitude and quadrupole/octopole planarity and alignment), and can account for a non--Gaussian "cold spot" on the sky. Despite the apparent inconsistency with the best-fit parameters required in inflationary models to account for the acoustic peaks, we consider the results sufficiently provocative to merit further consideration.Comment: 4 pages, 3 figures; emulateapj.cls; ApJL accepted version plus fixed error in vorticity calculation (sqrt(2) off in Table 1, abstract, and conclusions); basic conclusions unchange
    corecore