17 research outputs found

    A New MAC Address Spoofing Detection Technique Based on Random Forests

    Get PDF
    Media access control (MAC) addresses in wireless networks can be trivially spoofed using off-the-shelf devices. The aim of this research is to detect MAC address spoofing in wireless networks using a hard-to-spoof measurement that is correlated to the location of the wireless device, namely the received signal strength (RSS). We developed a passive solution that does not require modification for standards or protocols. The solution was tested in a live test-bed (i.e., a wireless local area network with the aid of two air monitors acting as sensors) and achieved 99.77%, 93.16% and 88.38% accuracy when the attacker is 8–13 m, 4–8 m and less than 4 m away from the victim device, respectively. We implemented three previous methods on the same test-bed and found that our solution outperforms existing solutions. Our solution is based on an ensemble method known as random forests.https://doi.org/10.3390/s1603028

    CAUSES AND MANAGEMENT OF VIRAL EYE INFECTION

    Get PDF
    Introduction: The eye is a fascinating organ for several reasons. It is not only have a composite structure, however it is considered an immune-privileged organ. The anatomy of the eye is composed of the anterior and posterior parts, the line of division is posterior to the lens. The anterior chamber lies within the anterior segment and is an immuneprivileged anatomical location, this is due to the fact that the T-cell response in this area is suppressed This protects the eye from potentially destructive immune attacks however it also makes defence against infectious agents challenging, particularly where T-cell responses are critical for immunological defence. Viruses could get into the eye by direct inoculation, or through haematogenous or neuronal spread. The diagnoses of viral eye infections are usually clinical one, helped by taking a thorough history and performing ophthalmic examination. But in challenging cases the lab tests are essential. In this review, we will discuss the most recent evidence regarding Causes and management of viral eye infection Aim of work: In this review, we will discuss the most recent evidence regarding Causes and management of viral eye infection Methodology: We did a systematic search for Causes and management of viral eye infection using PubMed search engine (http://www.ncbi.nlm.nih.gov/) and Google Scholar search engine (https://scholar.google.com). All relevant studies were retrieved and discussed. We only included full articles. Conclusions: A wide range of of viruses can affect the eye and cause viral eye infections, either as a primary infection or reactivation. Some affect the eye directly while the others indirectly but may still manifest with eye disease. One virus may affect several parts of the eye, while different viruses may cause the same eye disease. This could complicate the clinical diagnosis of viral eye disease, but the lab tests like PCR and antibody tests could assist in challenging cases where there may be diagnostic dilemma. The HIV epidemic has had an huge impact on ophthalmology clinics, this is because the virus can cause different eye diseases, and the associated decrease in cell-mediated immunity makes the person highly susceptible to opportunistic viral eye infections, sometimes with severe morbidity. There could be other viruses that may affect the eye that we did not discuss. Key words: Causes, management, viral eye infection

    The Saudi Critical Care Society practice guidelines on the management of COVID-19 in the ICU: Therapy section

    Get PDF
    BACKGROUND: The rapid increase in coronavirus disease 2019 (COVID-19) cases during the subsequent waves in Saudi Arabia and other countries prompted the Saudi Critical Care Society (SCCS) to put together a panel of experts to issue evidence-based recommendations for the management of COVID-19 in the intensive care unit (ICU). METHODS: The SCCS COVID-19 panel included 51 experts with expertise in critical care, respirology, infectious disease, epidemiology, emergency medicine, clinical pharmacy, nursing, respiratory therapy, methodology, and health policy. All members completed an electronic conflict of interest disclosure form. The panel addressed 9 questions that are related to the therapy of COVID-19 in the ICU. We identified relevant systematic reviews and clinical trials, then used the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach as well as the evidence-to-decision framework (EtD) to assess the quality of evidence and generate recommendations. RESULTS: The SCCS COVID-19 panel issued 12 recommendations on pharmacotherapeutic interventions (immunomodulators, antiviral agents, and anticoagulants) for severe and critical COVID-19, of which 3 were strong recommendations and 9 were weak recommendations. CONCLUSION: The SCCS COVID-19 panel used the GRADE approach to formulate recommendations on therapy for COVID-19 in the ICU. The EtD framework allows adaptation of these recommendations in different contexts. The SCCS guideline committee will update recommendations as new evidence becomes available

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey

    Get PDF
    Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Paraffin Wax [As a Phase Changing Material (PCM)] Based Composites Containing Multi-Walled Carbon Nanotubes for Thermal Energy Storage (TES) Development

    No full text
    Thermal energy storage (TES) technologies are considered as enabling and supporting technologies for more sustainable and reliable energy generation methods such as solar thermal and concentrated solar power. A thorough investigation of the TES system using paraffin wax (PW) as a phase changing material (PCM) should be considered. One of the possible approaches for improving the overall performance of the TES system is to enhance the thermal properties of the energy storage materials of PW. The current study investigated some of the properties of PW doped with nano-additives, namely, multi-walled carbon nanotubes (MWCNs), forming a nanocomposite PCM. The paraffin/MWCNT composite PCMs were tailor-made for enhanced and efficient TES applications. The thermal storage efficiency of the current TES bed system was approximately 71%, which is significant. Scanning electron spectroscopy (SEM) with energy dispersive X-ray (EDX) characterization showed the physical incorporation of MWCNTs with PW, which was achieved by strong interfaces without microcracks. In addition, the FTIR (Fourier transform infrared) and TGA (thermogravimetric analysis) experimental results of this composite PCM showed good chemical compatibility and thermal stability. This was elucidated based on the observed similar thermal mass loss profiles as well as the identical chemical bond peaks for all of the tested samples (PW, CNT, and PW/CNT composites)

    Transcriptome Analysis of Jojoba (Simmondsia chinensis) during Seed Development and Liquid Wax Ester Biosynthesis

    No full text
    Jojoba is one of the main two known plant source of natural liquid wax ester for use in various applications, including cosmetics, pharmaceuticals, and biofuel. Due to the lack of transcriptomic and genomic data on lipid biosynthesis and accumulation, molecular marker breeding has been used to improve jojoba oil production and quality. In the current study, the transcriptome of developing jojoba seeds was investigated using the Illunina NovaSeq 6000 system, 100 × 106 paired end reads, an average length of 100 bp, and a sequence depth of 12 Gb per sample. A total of 176,106 unigenes were detected with an average contig length of 201 bp. Gene Ontology (GO) showed that the detected unigenes were distributed in the three GO groups biological processes (BP, 5.53%), cellular component (CC, 6.06%), and molecular functions (MF, 5.88%) and distributed in 67 functional groups. The lipid biosynthesis pathway was established based on the expression of lipid biosynthesis genes, fatty acid (FA) biosynthesis, FA desaturation, FA elongation, fatty alcohol biosynthesis, triacylglycerol (TAG) biosynthesis, phospholipid metabolism, wax ester biosynthesis, and lipid transfer and storage genes. The detection of these categories of genes confirms the presence of an efficient lipid biosynthesis and accumulation system in developing jojoba seeds. The results of this study will significantly enhance the current understanding of wax ester biology in jojoba seeds and open new routes for the improvement of jojoba oil production and quality through biotechnology applications

    Experimental and Theoretical Analysis of Mechanical Properties of Graphite/Polyethylene Terephthalate Nanocomposites

    No full text
    In this work, graphite nanoplatelets (GNP) were incorporated into poly (ethylene terephthalate) (PET) matrix to prepare PET-GNP nanocomposites using a melt compounding followed by compression moulding and then quenching process. Both static and dynamic mechanical properties of these quenched materials were characterized as a function of GNP contents using dynamic mechanical thermal analysis (DMTA) and tensile machine, respectively. The results demonstrated that the addition of GNP improved the stiffness of PET significantly. Additionally, the maximum increase in the storage modulus of 72% at 6 wt.% GNP. The incorporation of GNP beyond 6 wt.% into PET decreases the storage moduli, but they remain higher than pure PET. The observed reduction could be due to agglomeration, resulting in poorer dispersion and distribution of higher levels of GNP into the PET matrix. In contrast to the results for moduli, tensile strength and elongations at break reduce with increasing the GNP content. For example, tensile strength reduced from ∼46 MPa (neat PET) to ∼39 MPa (−15%) for the nanocomposites containing 2 wt.% GNP. This reduction is accompanied by a decline in elongation at break from ∼6.3 (neat PET) to ∼3.4 (−46%) for the same nanocomposites. Such reductions are followed by a gradual decrease in upon further addition of GNP. These reductions indicate that increasing GNP loadings, results in brittleness in nanocomposites. In addition, it was found that quenched PET and composite samples were not fully crystallized after processing and therefore (cold) crystallized during the first heating cycle DMTA, as indicated by a rise in storage moduli above the glass transition temperature during the DMTA first heat. Furthermore, mathematical models based on non-linear theories are developed to capture the experimental data. For this, a set of mechanical stress-strain data is used for model parameters’ identification. Another set of data is used for the model validation that demonstrates good agreements with the experimental study

    Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries

    No full text
    Porous carbons are highly attractive and demanding materials which could be prepared using biomass waste; thus, they are promising for enhanced electrochemical capacitive performance in capacitors and cycling efficiency in Li-ion batteries. Herein, biomass (rice husk)-derived activated carbon was synthesized via a facile chemical route and used as anode materials for Li-ion batteries. Various characterization techniques were used to study the structural and morphological properties of the prepared activated carbon. The prepared activated carbon possessed a carbon structure with a certain degree of amorphousness. The morphology of the activated carbon was of spherical shape with a particle size of ~40–90 nm. Raman studies revealed the characteristic peaks of carbon present in the prepared activated carbon. The electrochemical studies evaluated for the fabricated coin cell with the activated carbon anode showed that the cell delivered a discharge capacity of ~321 mAhg−1 at a current density of 100 mAg−1 for the first cycle, and maintained a capacity of ~253 mAhg−1 for 400 cycles. The capacity retention was found to be higher (~81%) with 92.3% coulombic efficiency even after 400 cycles, which showed excellent cyclic reversibility and stability compared to commercial activated carbon. These results allow the waste biomass-derived anode to overcome the problem of cyclic stability and capacity performance. This study provides an insight for the fabrication of anodes from the rice husk which can be redirected into creating valuable renewable energy storage devices in the future, and the product could be a socially and ethically acceptable product
    corecore