8,764 research outputs found

    Data taking strategy for the phase study in ψK+K\psi^{\prime} \to K^+K^-

    Full text link
    The study of the relative phase between strong and electromagnetic amplitudes is of great importance for understanding the dynamics of charmonium decays. The information of the phase can be obtained model-independently by fitting the scan data of some special decay channels, one of which is ψK+K\psi^{\prime} \to K^{+}K^{-}. To find out the optimal data taking strategy for a scan experiment in the measurement of the phase in ψK+K\psi^{\prime} \to K^{+} K^{-}, the minimization process is analyzed from a theoretical point of view. The result indicates that for one parameter fit, only one data taking point in the vicinity of a resonance peak is sufficient to acquire the optimal precision. Numerical results are obtained by fitting simulated scan data. Besides the results related to the relative phase between strong and electromagnetic amplitudes, the method is extended to analyze the fits of other resonant parameters, such as the mass and the total decay width of ψ\psi^{\prime}.Comment: 13 pages, 7 figure

    Search for D to phi l nu and measurement of the branching fraction for D to phi pi

    Full text link
    Using a data sample of integrated luminosity of about 33 pb1^{-1} collected around 3.773 GeV with the BESII detector at the BEPC collider, the semileptonic decays D+ϕe+νeD^+ \to \phi e ^+\nu_e, D+ϕμ+νμD^+ \to \phi \mu^+\nu_\mu and the hadronic decay D+ϕπ+D^+ \to \phi \pi^+ are studied. The upper limits of the branching fractions are set to be BF(D+ϕe+νe)<BF(D^+ \to \phi e ^+\nu_e) < 2.01% and BF(D+ϕμ+νμ)<BF(D^+ \to \phi \mu^+ \nu_\mu) < 2.04% at the 90% confidence level. The ratio of the branching fractions for D+ϕπ+D^+ \to \phi \pi^+ relative to D+Kπ+π+D^+ \to K^-\pi^+\pi^+ is measured to be 0.057±0.011±0.0030.057 \pm 0.011 \pm 0.003. In addition, the branching fraction for D+ϕπ+D^+ \to \phi \pi^+ is obtained to be (5.2±1.0±0.4)×103(5.2 \pm 1.0 \pm 0.4) \times 10^{-3}.Comment: 6 pages, 5 figures, to be published in Eur.Phys.J.

    NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules

    Get PDF
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/

    Quantum Dense Coding Exploiting Bright EPR Beam

    Get PDF
    Highly efficient quantum dense coding for continuous variables has been experimentally accomplished by means of exploiting bright EPR beam with anticorrelation of amplitude quadratures and correlation of phase quadratures, which is generated from a nondegenerate optical parametric amplifier operating in the state of deamplification. Two bits of classical information are encoded on two quadratures of a half of bright EPR beam at the sender Alice and transmitted to the receiver Bob via one qubit of the shared quantum state after encoding. The amplitude and phase signals are simultaneously decoded with the other half of EPR beam by the direct measurement of the Bell-state at Bob. The signal to noise ratios of the simultaneously measured amplitude and phase signals are improved 5.4dB and 4.8dB with respect to that of the shot noise limit respectively. A high degree of immunity to unauthorized eavesdropping of the presented quantum communication scheme is experimentally demonstrated.Comment: 11 pages, 5 figure

    Measurements of branching fractions for inclusive K0~/K0 and K*(892)+- decays of neutral and charged D mesons

    Get PDF
    Using the data sample of about 33 pb-1 collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we have studied inclusive K0~/K0 and K*(892)+- decays of D0 and D+ mesons. The branching fractions for the inclusive K0~/K0 and K*(892)- decays are measured to be BF(D0 to K0~/K0 X)=(47.6+-4.8+-3.0)%, BF(D+ to K0~/K0 X)=(60.5+-5.5+-3.3)%, BF(D0 to K*- X)=(15.3+- 8.3+- 1.9)% and BF(D+ to K*- X)=(5.7+- 5.2+- 0.7)%. The upper limits of the branching fractions for the inclusive K*(892)+ decays are set to be BF(D0 to K*+ X)<3.6% and BF(D+ to K*+ X) <20.3% at 90% confidence level

    Direct Measurements of the Branching Fractions for Inclusive K±K^\pm and Inclusive Semileptonic Decays of D+D^+ and D0D^0 Mesons

    Full text link
    With singly-tagged Dˉ\bar D samples selected from the data collected at and around 3.773 GeV with the BESII detector at the BEPC collider, we have measured the branching fractions for the inclusive K±K^\pm decays of D+D^+ and D0D^0 mesons, which are BF(D+KX)=(24.7±1.3±1.2)BF(D^+\to K^-X) = (24.7 \pm 1.3 \pm 1.2)%, BF(D+K+X)=(6.1±0.9±0.4)BF(D^+\to K^+X) = (6.1 \pm 0.9 \pm 0.4) %, BF(D0KX)=(57.8±1.6±3.2)BF(D^0\to K^-X) = (57.8 \pm 1.6 \pm 3.2) % and BF(D0K+X)=(3.5±0.7±0.3)BF(D^0\to K^+X) = (3.5 \pm 0.7 \pm 0.3) %, respectively. We have also measured the branching fractions for the inclusive semileptonic decays of D+D^+ and D0D^0 mesons to be BF(D+e+X)=(15.2±0.9±0.8)BF(D^+ \to e^+ X)=(15.2 \pm 0.9 \pm 0.8)% and BF(D0e+X)=(6.3±0.7±0.4)BF(D^0 \to e^+ X) =(6.3 \pm 0.7 \pm 0.4) %. These yield the ratio of their partial widths to be Γ(D+e+X)/Γ(D0e+X)=0.95±0.12±0.07\Gamma(D^+ \to e^+X)/\Gamma(D^0 \to e^+X)=0.95 \pm 0.12 \pm 0.07.Comment: 6 pages, 5 figure

    Information loss in local dissipation environments

    Full text link
    The sensitivity of entanglement to the thermal and squeezed reservoirs' parameters is investigated regarding entanglement decay and what is called sudden-death of entanglement, ESD, for a system of two qubit pairs. The dynamics of information is investigated by means of the information disturbance and exchange information. We show that for squeezed reservoir, we can keep both of the entanglement and information survival for a long time. The sudden death of information is seen in the case of thermal reservoir
    corecore