293 research outputs found

    mtDNA Variation in Caste Populations of Andhra Pradesh, India.

    Get PDF
    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance inelude (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15;p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.We would like to thank T. Jenkins, H. Soodyall, P. Nute, and J. Kidd for providing DNA samples and S. Austin, A. Comuzzie, R. Duggirala, R. Feldman, K. Lum, A. Rogers, and S. Watkins for technical advice, critical comments, and thoughtful discussion. This work was supported in part by the National Science Foundation through grant NSF-DBS-9211255, the Clinical Research Center at the University of Utah through grant NIH RR-00064, and the Technology Access Center of the Utah Human Genome Project

    Sheldon-Hall syndrome

    Get PDF
    Sheldon-Hall syndrome (SHS) is a rare multiple congenital contracture syndrome characterized by contractures of the distal joints of the limbs, triangular face, downslanting palpebral fissures, small mouth, and high arched palate. Epidemiological data for the prevalence of SHS are not available, but less than 100 cases have been reported in the literature. Other common clinical features of SHS include prominent nasolabial folds, high arched palate, attached earlobes, mild cervical webbing, short stature, severe camptodactyly, ulnar deviation, and vertical talus and/or talipes equinovarus. Typically, the contractures are most severe at birth and non-progressive. SHS is inherited in an autosomal dominant pattern but about half the cases are sporadic. Mutations in either MYH3, TNNI2, or TNNT3 have been found in about 50% of cases. These genes encode proteins of the contractile apparatus of fast twitch skeletal muscle fibers. The diagnosis of SHS is based on clinical criteria. Mutation analysis is useful to distinguish SHS from arthrogryposis syndromes with similar features (e.g. distal arthrogryposis 1 and Freeman-Sheldon syndrome). Prenatal diagnosis by ultrasonography is feasible at 18–24 weeks of gestation. If the family history is positive and the mutation is known in the family, prenatal molecular genetic diagnosis is possible. There is no specific therapy for SHS. However, patients benefit from early intervention with occupational and physical therapy, serial casting, and/or surgery. Life expectancy and cognitive abilities are normal

    Comprehensive analysis of Alu-associated diversity on the human sex chromosomes

    Get PDF
    A comprehensive analysis of the human sex chromosomes was undertaken to assess Alu-associated human genomic diversity and to identify novel Alu insertion polymorphisms for the study of human evolution. Three hundred forty-five recently integrated Alu elements from eight different Alu subfamilies were identified on the X and Y chromosomes, 225 of which were selected and analyzed by polymerase chain reaction (PCR). From a total of 225 elements analyzed, 16 were found to be polymorphic on the X chromosome and one on the Y chromosome. In line with previous research using other classes of genetic markers, our results indicate reduced Alu-associated insertion polymorphism on the human sex chromosomes, presumably reflective of the reduced recombination rates and lower effective population sizes on the sex chromosomes. The Alu insertion polymorphisms identified in this study should prove useful for the study of human population genetics. © 2003 Elsevier B.V. All rights reserved

    Genetic Evidence on the Origins of Indian Caste Populations

    Get PDF
    This is the published version, also available here: http://www.dx.doi.org/10.1101/gr.173301.The origins and affinities of the ∼1 billion people living on the subcontinent of India have long been contested. This is owing, in part, to the many different waves of immigrants that have influenced the genetic structure of India. In the most recent of these waves, Indo-European-speaking people from West Eurasia entered India from the Northwest and diffused throughout the subcontinent. They purportedly admixed with or displaced indigenous Dravidic-speaking populations. Subsequently they may have established the Hindu caste system and placed themselves primarily in castes of higher rank. To explore the impact of West Eurasians on contemporary Indian caste populations, we compared mtDNA (400 bp of hypervariable region 1 and 14 restriction site polymorphisms) and Y-chromosome (20 biallelic polymorphisms and 5 short tandem repeats) variation in ∼265 males from eight castes of different rank to ∼750 Africans, Asians, Europeans, and other Indians. For maternally inherited mtDNA, each caste is most similar to Asians. However, 20%–30% of Indian mtDNA haplotypes belong to West Eurasian haplogroups, and the frequency of these haplotypes is proportional to caste rank, the highest frequency of West Eurasian haplotypes being found in the upper castes. In contrast, for paternally inherited Y-chromosome variation each caste is more similar to Europeans than to Asians. Moreover, the affinity to Europeans is proportionate to caste rank, the upper castes being most similar to Europeans, particularly East Europeans. These findings are consistent with greater West Eurasian male admixture with castes of higher rank. Nevertheless, the mitochondrial genome and the Y chromosome each represents only a single haploid locus and is more susceptible to large stochastic variation, bottlenecks, and selective sweeps. Thus, to increase the power of our analysis, we assayed 40 independent, biparentally inherited autosomal loci (1 LINE-1 and 39 Alu elements) in all of the caste and continental populations (∼600 individuals). Analysis of these data demonstrated that the upper castes have a higher affinity to Europeans than to Asians, and the upper castes are significantly more similar to Europeans than are the lower castes. Collectively, all five datasets show a trend toward upper castes being more similar to Europeans, whereas lower castes are more similar to Asians. We conclude that Indian castes are most likely to be of proto-Asian origin with West Eurasian admixture resulting in rank-related and sex-specific differences in the genetic affinities of castes to Asians and Europeans

    Mitral regurgitation as a phenotypic manifestation of nonphotosensitive trichothiodystrophy due to a splice variant in MPLKIP

    Get PDF
    Background: Nonphotosensitive trichothiodystrophy (TTDN) is a rare autosomal recessive disorder of neuroectodermal origin. The condition is marked by hair abnormalities, intellectual impairment, nail dystrophies and susceptibility to infections but with no UV sensitivity. Methods: We identified three consanguineous Pakistani families with varied TTDN features and used homozygosity mapping, linkage analysis, and Sanger and exome sequencing in order to identify pathogenic variants. Haplotype analysis was performed and haplotype age estimated. A splicing assay was used to validate the effect of the MPLKIP splice variant on expression. Results: Affected individuals from all families exhibit several TTDN features along with a heart-specific feature, i.e. mitral regurgitation. Exome sequencing in the probands from families ED168 and ED241 identified a homozygous splice mutation c.339 + 1G > A within MPLKIP. The same splice variant co-segregates with TTDN in a third family ED210. The MPLKIP splice variant was not found in public databases, e.g. the Exome Aggregation Consortium, and in unrelated Pakistani controls. Functional analysis of the splice variant confirmed intron retention, which leads to protein truncation and loss of a phosphorylation site. Haplotype analysis identified a 585.1-kb haplotype which includes the MPLKIP variant, supporting the existence of a founder haplotype that is estimated to be 25,900 years old. Conclusion: This study extends the allelic and phenotypic spectra of MPLKIP-related TTDN, to include a splice variant that causes cardiomyopathy as part of the TTDN phenotype

    Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation

    Get PDF
    Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses
    corecore